#!/usr/bin/env bash # Prepare script for MLS English ASR recipe in icefall # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 # Configuration for BPE tokenizer vocab_sizes=(2000) # You can add more sizes like (500 1000 2000) for comparison # Directory where dataset will be downloaded dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". mkdir -p data mkdir -p data/audio # Add this line mkdir -p data/manifests mkdir -p data/lang log() { local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Starting MLS English data preparation" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download MLS English dataset" if [ ! -d $dl_dir/mls_english ]; then if ! git clone https://huggingface.co/datasets/parler-tts/mls_eng $dl_dir/mls_english; then log "Failed to download MLS English dataset" exit 1 fi fi fi # if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then # log "Stage 1: Prepare MLS English manifest" # # We assume that you have downloaded the MLS English corpus # # to $dl_dir/mls_english # if [ ! -e data/manifests/.mls_english.done ]; then # # lhotse prepare mls_english -j $nj $dl_dir/mls_english data/manifests # python local/utils/save_audios.py --num-jobs 8 --dataset-dir $dl_dir/mls_english --audio-dir ./data/audio --manifest-dir ./data/manifests # touch data/manifests/.mls_english.done # fi # fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Compute MLS English fbank" if [ ! -e data/manifests/.mls_english-validated.done ]; then python local/compute_fbank_mls_english.py \ --manifest-dir data/manifests \ --audio-dir data/audio \ --dl-dir $dl_dir/mls_english # --dl-dir /root/datasets/parler-tts--mls_eng python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_train.jsonl.gz python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_dev.jsonl.gz python local/validate_manifest.py --manifest data/manifests/mls_english_cuts_test.jsonl.gz touch data/manifests/.mls_english-validated.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare transcript for BPE training" if [ ! -f data/lang/transcript.txt ]; then log "Generating transcripts for BPE training" ./local/utils/generate_transcript.py --lang-dir data/lang fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Prepare BPE tokenizer" for vocab_size in ${vocab_sizes[@]}; do log "Training BPE model with vocab_size=${vocab_size}" bpe_dir=data/lang/bpe_${vocab_size} mkdir -p $bpe_dir if [ ! -f $bpe_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $bpe_dir \ --vocab-size $vocab_size \ --transcript data/lang/transcript.txt fi done fi log "MLS English data preparation completed successfully"