#!/usr/bin/env bash set -eou pipefail nj=16 stage=-1 stop_stage=100 # Split data/${lang}set to this number of pieces # This is to avoid OOM during feature extraction. num_splits=1000 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/$release/$lang # This directory contains the following files downloaded from # https://mozilla-common-voice-datasets.s3.dualstack.us-west-2.amazonaws.com/${release}/${release}-${lang}.tar.gz # # - clips # - dev.tsv # - invalidated.tsv # - other.tsv # - reported.tsv # - test.tsv # - train.tsv # - validated.tsv dl_dir=$PWD/download release=cv-corpus-13.0-2023-03-09 lang=en . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data/${lang}". # You can safely remove "data/${lang}" and rerun this script to regenerate it. mkdir -p data/${lang} log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/$release, # you can create a symlink # # ln -sfv /path/to/$release $dl_dir/$release # if [ ! -d $dl_dir/$release/$lang/clips ]; then lhotse download commonvoice --languages $lang --release $release $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare CommonVoice manifest" # We assume that you have downloaded the CommonVoice corpus # to $dl_dir/$release mkdir -p data/${lang}/manifests if [ ! -e data/${lang}/manifests/.cv-${lang}.done ]; then lhotse prepare commonvoice --language $lang -j $nj $dl_dir/$release data/${lang}/manifests touch data/${lang}/manifests/.cv-${lang}.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Preprocess CommonVoice manifest" if [ ! -e data/${lang}/fbank/.preprocess_complete ]; then ./local/preprocess_commonvoice.py --language $lang touch data/${lang}/fbank/.preprocess_complete fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for dev and test subsets of CommonVoice" mkdir -p data/${lang}/fbank if [ ! -e data/${lang}/fbank/.cv-${lang}_dev_test.done ]; then ./local/compute_fbank_commonvoice_dev_test.py --language $lang touch data/${lang}/fbank/.cv-${lang}_dev_test.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Split train subset into ${num_splits} pieces" split_dir=data/${lang}/fbank/cv-${lang}_train_split_${num_splits} if [ ! -e $split_dir/.cv-${lang}_train_split.done ]; then lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_train_raw.jsonl.gz $split_dir touch $split_dir/.cv-${lang}_train_split.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute features for train subset of CommonVoice" if [ ! -e data/${lang}/fbank/.cv-${lang}_train.done ]; then ./local/compute_fbank_commonvoice_splits.py \ --num-workers $nj \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits \ --language $lang touch data/${lang}/fbank/.cv-${lang}_train.done fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Combine features for train" if [ ! -f data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz ]; then pieces=$(find data/${lang}/fbank/cv-${lang}_train_split_${num_splits} -name "cv-${lang}_cuts_train.*.jsonl.gz") lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz fi fi