# Copyright 2021-2024 Xiaomi Corp. (authors: Fangjun Kuang, # Zengrui Jin, # Yifan Yang,) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from scaling import Balancer class Decoder(nn.Module): """LSTM decoder.""" def __init__( self, vocab_size: int, blank_id: int, decoder_dim: int, num_layers: int, hidden_dim: int, embedding_dropout: float = 0.0, rnn_dropout: float = 0.0, ): """ Args: vocab_size: Number of tokens of the modeling unit including blank. blank_id: The ID of the blank symbol. decoder_dim: Dimension of the input embedding. num_layers: Number of LSTM layers. hidden_dim: Hidden dimension of LSTM layers. embedding_dropout: Dropout rate for the embedding layer. rnn_dropout: Dropout for LSTM layers. """ super().__init__() self.embedding = nn.Embedding( num_embeddings=vocab_size, embedding_dim=decoder_dim, ) # the balancers are to avoid any drift in the magnitude of the # embeddings, which would interact badly with parameter averaging. self.balancer = Balancer( decoder_dim, channel_dim=-1, min_positive=0.0, max_positive=1.0, min_abs=0.5, max_abs=1.0, prob=0.05, ) self.blank_id = blank_id self.vocab_size = vocab_size self.embedding_dropout = nn.Dropout(embedding_dropout) self.rnn = nn.LSTM( input_size=decoder_dim, hidden_size=hidden_dim, num_layers=num_layers, batch_first=True, dropout=rnn_dropout, ) self.balancer2 = Balancer( decoder_dim, channel_dim=-1, min_positive=0.0, max_positive=1.0, min_abs=0.5, max_abs=1.0, prob=0.05, ) def forward( self, y: torch.Tensor, states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> torch.Tensor: """ Args: y: A 2-D tensor of shape (N, U). Returns: Return a tensor of shape (N, U, decoder_dim). """ y = y.to(torch.int64) # this stuff about clamp() is a temporary fix for a mismatch # at utterance start, we use negative ids in beam_search.py embedding_out = self.embedding(y.clamp(min=0)) * (y >= 0).unsqueeze(-1) embedding_out = self.embedding_dropout(embedding_out) embedding_out = self.balancer(embedding_out) rnn_out, (h, c) = self.rnn(embedding_out, states) rnn_out = F.relu(rnn_out) rnn_out = self.balancer2(rnn_out) return rnn_out, (h, c)