#!/usr/bin/env bash set -eou pipefail nj=16 stage=-1 stop_stage=100 # Split data/${lang}set to this number of pieces # This is to avoid OOM during feature extraction. num_splits=1000 # In case you want to use all validated data use_validated=false # In case you are willing to take the risk and use invalidated data use_invalidated=false # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/$release/$lang # This directory contains the following files downloaded from # https://mozilla-common-voice-datasets.s3.dualstack.us-west-2.amazonaws.com/${release}/${release}-${lang}.tar.gz # # - clips # - dev.tsv # - invalidated.tsv # - other.tsv # - reported.tsv # - test.tsv # - train.tsv # - validated.tsv # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download release=cv-corpus-12.0-2022-12-07 lang=fr perturb_speed=false . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/${lang}/lang_bpe_xxx, # data/${lang}/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 # 1000 500 ) # All files generated by this script are saved in "data/${lang}". # You can safely remove "data/${lang}" and rerun this script to regenerate it. mkdir -p data/${lang} log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if ! command -v ffmpeg &> /dev/null; then echo "This dataset requires ffmpeg" echo "Please install ffmpeg first" echo "" echo " sudo apt-get install ffmpeg" exit 1 fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/$release, # you can create a symlink # # ln -sfv /path/to/$release $dl_dir/$release # if [ ! -d $dl_dir/$release/$lang/clips ]; then lhotse download commonvoice --languages $lang --release $release $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare CommonVoice manifest" # We assume that you have downloaded the CommonVoice corpus # to $dl_dir/$release mkdir -p data/${lang}/manifests if [ ! -e data/${lang}/manifests/.cv-${lang}.done ]; then lhotse prepare commonvoice --language $lang -j $nj $dl_dir/$release data/${lang}/manifests if [ $use_validated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.validated.done ]; then log "Also prepare validated data" lhotse prepare commonvoice \ --split validated \ --language $lang \ -j $nj $dl_dir/$release data/${lang}/manifests touch data/${lang}/manifests/.cv-${lang}.validated.done fi if [ $use_invalidated = true ] && [ ! -f data/${lang}/manifests/.cv-${lang}.invalidated.done ]; then log "Also prepare invalidated data" lhotse prepare commonvoice \ --split invalidated \ --language $lang \ -j $nj $dl_dir/$release data/${lang}/manifests touch data/${lang}/manifests/.cv-${lang}.invalidated.done fi touch data/${lang}/manifests/.cv-${lang}.done fi # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin if [ $use_validated = true ]; then log "Getting cut ids from dev/test sets for later use" gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_test.jsonl.gz \ | jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_test_ids gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_dev.jsonl.gz \ | jq '.id' | sed 's/"//g' > data/${lang}/manifests/cv-${lang}_dev_ids fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests if [ ! -e data/manifests/.musan.done ]; then lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Preprocess CommonVoice manifest" if [ ! -e data/${lang}/fbank/.preprocess_complete ]; then ./local/preprocess_commonvoice.py --language $lang touch data/${lang}/fbank/.preprocess_complete fi if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.validated.preprocess_complete ]; then log "Also preprocess validated data" ./local/preprocess_commonvoice.py --language $lang --dataset validated touch data/${lang}/fbank/.validated.preprocess_complete fi if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.invalidated.preprocess_complete ]; then log "Also preprocess invalidated data" ./local/preprocess_commonvoice.py --language $lang --dataset invalidated touch data/${lang}/fbank/.invalidated.preprocess_complete fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for dev and test subsets of CommonVoice" mkdir -p data/${lang}/fbank if [ ! -e data/${lang}/fbank/.cv-${lang}_dev_test.done ]; then ./local/compute_fbank_commonvoice_dev_test.py --language $lang touch data/${lang}/fbank/.cv-${lang}_dev_test.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Split train subset into ${num_splits} pieces" split_dir=data/${lang}/fbank/cv-${lang}_train_split_${num_splits} if [ ! -e $split_dir/.cv-${lang}_train_split.done ]; then lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_train_raw.jsonl.gz $split_dir touch $split_dir/.cv-${lang}_train_split.done fi split_dir=data/${lang}/fbank/cv-${lang}_validated_split_${num_splits} if [ $use_validated = true ] && [ ! -f $split_dir/.cv-${lang}_validated.done ]; then log "Also split validated data" lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_validated_raw.jsonl.gz $split_dir touch $split_dir/.cv-${lang}_validated.done fi split_dir=data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits} if [ $use_invalidated = true ] && [ ! -f $split_dir/.cv-${lang}_invalidated.done ]; then log "Also split invalidated data" lhotse split $num_splits ./data/${lang}/fbank/cv-${lang}_cuts_invalidated_raw.jsonl.gz $split_dir touch $split_dir/.cv-${lang}_invalidated.done fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Compute features for train subset of CommonVoice" if [ ! -e data/${lang}/fbank/.cv-${lang}_train.done ]; then ./local/compute_fbank_commonvoice_splits.py \ --num-workers $nj \ --batch-duration 200 \ --start 0 \ --num-splits $num_splits \ --language $lang \ --perturb-speed $perturb_speed touch data/${lang}/fbank/.cv-${lang}_train.done fi if [ $use_validated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then log "Also compute features for validated data" ./local/compute_fbank_commonvoice_splits.py \ --subset validated \ --num-workers $nj \ --batch-duration 200 \ --start 0 \ --num-splits $num_splits \ --language $lang \ --perturb-speed $perturb_speed touch data/${lang}/fbank/.cv-${lang}_validated.done fi if [ $use_invalidated = true ] && [ ! -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then log "Also compute features for invalidated data" ./local/compute_fbank_commonvoice_splits.py \ --subset invalidated \ --num-workers $nj \ --batch-duration 200 \ --start 0 \ --num-splits $num_splits \ --language $lang \ --perturb-speed $perturb_speed touch data/${lang}/fbank/.cv-${lang}_invalidated.done fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Combine features for train" if [ ! -f data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz ]; then pieces=$(find data/${lang}/fbank/cv-${lang}_train_split_${num_splits} -name "cv-${lang}_cuts_train.*.jsonl.gz") lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz fi if [ $use_validated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_validated.done ]; then log "Also combine features for validated data" pieces=$(find data/${lang}/fbank/cv-${lang}_validated_split_${num_splits} -name "cv-${lang}_cuts_validated.*.jsonl.gz") lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_validated.jsonl.gz touch data/${lang}/fbank/.cv-${lang}_validated.done fi if [ $use_invalidated = true ] && [ -f data/${lang}/fbank/.cv-${lang}_invalidated.done ]; then log "Also combine features for invalidated data" pieces=$(find data/${lang}/fbank/cv-${lang}_invalidated_split_${num_splits} -name "cv-${lang}_cuts_invalidated.*.jsonl.gz") lhotse combine $pieces data/${lang}/fbank/cv-${lang}_cuts_invalidated.jsonl.gz touch data/${lang}/fbank/.cv-${lang}_invalidated.done fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Compute fbank for musan" mkdir -p data/fbank if [ ! -e data/fbank/.musan.done ]; then ./local/compute_fbank_musan.py touch data/fbank/.musan.done fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then log "Stage 9: Prepare Char based lang" lang_dir=data/${lang}/lang_char/ mkdir -p $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for lang preparation" # Prepare text. # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin if [ $use_validated = true ]; then gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_validated.jsonl.gz \ | jq '.text' | sed 's/"//g' >> $lang_dir/text else gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_train.jsonl.gz \ | jq '.text' | sed 's/"//g' > $lang_dir/text fi if [ $use_invalidated = true ]; then gunzip -c data/${lang}/manifests/cv-${lang}_supervisions_invalidated.jsonl.gz \ | jq '.text' | sed 's/"//g' >> $lang_dir/text fi if [ $lang == "yue" ] || [ $lang == "zh-HK" ]; then # Get words.txt and words_no_ids.txt ./local/word_segment_yue.py \ --input-file $lang_dir/text \ --output-dir $lang_dir \ --lang $lang mv $lang_dir/text $lang_dir/_text cp $lang_dir/transcript_words.txt $lang_dir/text if [ ! -f $lang_dir/tokens.txt ]; then ./local/prepare_char.py --lang-dir $lang_dir fi else log "word_segment_${lang}.py not implemented yet" exit 1 fi fi else log "Stage 9: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/${lang}/lang_bpe_${vocab_size} mkdir -p $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" file=$( find "data/${lang}/fbank/cv-${lang}_cuts_train.jsonl.gz" ) # Prepare text. # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin gunzip -c ${file} \ | jq '.text' | sed 's/"//g' > $lang_dir/transcript_words.txt # Ensure space only appears once sed -i 's/\t/ /g' $lang_dir/transcript_words.txt sed -i 's/[ ][ ]*/ /g' $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/words.txt ]; then cat $lang_dir/transcript_words.txt | sed 's/ /\n/g' \ | sort -u | sed '/^$/d' > $lang_dir/words.txt (echo '!SIL'; echo ''; echo ''; ) | cat - $lang_dir/words.txt | sort | uniq | awk ' BEGIN { print " 0"; } { if ($1 == "") { print " is in the vocabulary!" | "cat 1>&2" exit 1; } if ($1 == "") { print " is in the vocabulary!" | "cat 1>&2" exit 1; } printf("%s %d\n", $1, NR); } END { printf("#0 %d\n", NR+1); printf(" %d\n", NR+2); printf(" %d\n", NR+3); }' > $lang_dir/words || exit 1; mv $lang_dir/words $lang_dir/words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi done fi fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then lang_dir=data/${lang}/lang_char mkdir -p $lang_dir/lm for ngram in 3 ; do if [ ! -f $lang_dir/lm/${ngram}-gram.unpruned.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order ${ngram} \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm/${ngram}gram.unpruned.arpa fi if [ ! -f $lang_dir/lm/G_${ngram}_gram_char.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=${ngram} \ $lang_dir/lm/${ngram}gram.unpruned.arpa \ > $lang_dir/lm/G_${ngram}_gram_char.fst.txt fi if [ ! -f $lang_dir/lm/HLG.fst ]; then ./local/prepare_lang_fst.py \ --lang-dir $lang_dir \ --ngram-G $lang_dir/lm/G_${ngram}_gram_char.fst.txt fi done else for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/${lang}/lang_bpe_${vocab_size} mkdir -p $lang_dir/lm #3-gram used in building HLG, 4-gram used for LM rescoring for ngram in 3 4; do if [ ! -f $lang_dir/lm/${ngram}gram.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order ${ngram} \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm/${ngram}gram.arpa fi if [ ! -f $lang_dir/lm/${ngram}gram.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=${ngram} \ $lang_dir/lm/${ngram}gram.arpa > $lang_dir/lm/G_${ngram}_gram.fst.txt fi done done fi fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Compile HLG" if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then lang_dir=data/${lang}/lang_char for ngram in 3 ; do if [ ! -f $lang_dir/lm/HLG_${ngram}.fst ]; then ./local/compile_hlg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char fi done else for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/${lang}/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir done fi fi # Compile LG for RNN-T fast_beam_search decoding if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Compile LG" if [ $lang == "yue" ] || [ $lang == "zh-TW" ] || [ $lang == "zh-CN" ] || [ $lang == "zh-HK" ]; then lang_dir=data/${lang}/lang_char for ngram in 3 ; do if [ ! -f $lang_dir/lm/LG_${ngram}.fst ]; then ./local/compile_lg.py --lang-dir $lang_dir --lm G_${ngram}_gram_char fi done else for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/${lang}/lang_bpe_${vocab_size} ./local/compile_lg.py --lang-dir $lang_dir done fi fi