#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=100 # vocab_sizes=(500 1000 2000) vocab_sizes=(2000) # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/ReazonSpeech # You can find FLAC files in this directory. # You can download them from https://huggingface.co/datasets/reazon-research/reazonspeech # # - $dl_dir/dataset.json # The metadata of the ReazonSpeech dataset. dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Running prepare.sh" log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/mls_eng, # you can create a symlink # # ln -sfv /path/to/mls_eng $dl_dir/mls_eng # if [ ! -d $dl_dir/mls_english ]; then git clone https://huggingface.co/datasets/parler-tts/mls_eng $dl_dir/mls_eng fi fi ## Not necessary to create manifest or pre-compute fbank for on-the-fly feature computation ## # if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then # log "Stage 1: Prepare MLS English manifest" # # We assume that you have downloaded the ReazonSpeech corpus # # to $dl_dir/ReazonSpeech # mkdir -p data/manifests # if [ ! -e data/manifests/.reazonspeech.done ]; then # lhotse prepare reazonspeech -j $nj $dl_dir/ReazonSpeech data/manifests # touch data/manifests/.reazonspeech.done # fi # fi # if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then # log "Stage 2: Compute ReazonSpeech fbank" # if [ ! -e data/manifests/.reazonspeech-validated.done ]; then # python local/compute_fbank_reazonspeech.py --manifest-dir data/manifests # python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_train.jsonl.gz # python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_dev.jsonl.gz # python local/validate_manifest.py --manifest data/manifests/reazonspeech_cuts_test.jsonl.gz # touch data/manifests/.reazonspeech-validated.done # fi # fi ############################################################################################### # if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then # log "Stage 3: Prepare ReazonSpeech lang_char" # python local/prepare_lang_char.py data/manifests/reazonspeech_cuts_train.jsonl.gz # fi # if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then # log "Stage 4: Show manifest statistics" # python local/display_manifest_statistics.py --manifest-dir data/manifests > data/manifests/manifest_statistics.txt # cat data/manifests/manifest_statistics.txt # fi mkdir -p data/lang lang_dir=data/lang log "lang_dir: $lang_dir" if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare BPE based lang" if [ ! -f $lang_dir/transcript.txt ]; then log "Generate transcript for BPE training" ./local/utils/generate_transcript.py --lang-dir $lang_dir # files=$( # find "$dl_dir/LibriSpeech/train-clean-100" -name "*.trans.txt" # find "$dl_dir/LibriSpeech/train-clean-360" -name "*.trans.txt" # find "$dl_dir/LibriSpeech/train-other-500" -name "*.trans.txt" # ) # for f in ${files[@]}; do # cat $f | cut -d " " -f 2- # done > $lang_dir/transcript_words.txt fi for vocab_size in ${vocab_sizes[@]}; do log "Train BPE model with vocab_size: $vocab_size" bpe_dir=data/lang/bpe_${vocab_size} mkdir -p $bpe_dir if [ ! -f $bpe_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $bpe_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript.txt fi done fi