#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=0 stop_stage=100 sampling_rate=16000 nj=32 perturb_speed=true vocab_sizes=( # 5000 # 2000 # 1000 500 ) dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: Download LM" # we directly use the librispeech lm here mkdir -p $dl_dir/lm if [ ! -e $dl_dir/lm/.done ]; then ./local/download_lm.py --out-dir=$dl_dir/lm touch $dl_dir/lm/.done fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # If you have pre-downloaded it to /path/to/LibriTTS, # you can create a symlink # # ln -sfv /path/to/LibriTTS $dl_dir/LibriTTS # if [ ! -d $dl_dir/LibriTTS ]; then lhotse download libritts $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LibriTTS manifest" # We assume that you have downloaded the LibriTTS corpus # to $dl_dir/LibriTTS mkdir -p data/manifests if [ ! -e data/manifests/.libritts.done ]; then lhotse prepare libritts --num-jobs 32 $dl_dir/LibriTTS data/manifests touch data/manifests/.libritts.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute Fbank for LibriTTS" mkdir -p data/fbank if [ ! -e data/fbank/.libritts.done ]; then ./local/compute_fbank_libritts.py \ --sampling-rate $sampling_rate \ --perturb-speed $perturb_speed touch data/fbank/.libritts.done fi # Here we shuffle and combine the train-clean-100, train-clean-360 and # train-other-500 together to form the training set. if [ ! -f data/fbank/libritts_cuts_train-all-shuf.jsonl.gz ]; then cat <(gunzip -c data/fbank/libritts_cuts_train-clean-100.jsonl.gz) \ <(gunzip -c data/fbank/libritts_cuts_train-clean-360.jsonl.gz) \ <(gunzip -c data/fbank/libritts_cuts_train-other-500.jsonl.gz) | \ shuf | gzip -c > data/fbank/libritts_cuts_train-all-shuf.jsonl.gz fi if [ ! -e data/fbank/.libritts-validated.done ]; then log "Validating data/fbank for LibriTTS" ./local/validate_manifest.py \ data/fbank/libritts_cuts_train-all-shuf.jsonl.gz touch data/fbank/.libritts-validated.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Train BPE model for normalized text" if [ ! -f data/text ]; then gunzip -c data/manifests/libritts_supervisions_train-clean-100.jsonl.gz \ | jq ".text" | sed 's/"//g' \ | ./local/norm_text.py > data/text gunzip -c data/manifests/libritts_supervisions_train-clean-360.jsonl.gz \ | jq ".text" | sed 's/"//g' \ | ./local/norm_text.py >> data/text gunzip -c data/manifests/libritts_supervisions_train-other-500.jsonl.gz \ | jq ".text" | sed 's/"//g' \ | ./local/norm_text.py >> data/text fi for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir cp data/text $lang_dir/text if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/text fi done fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir if [ ! -f $dl_dir/lm/librispeech-lexicon.txt ]; then log "No lexicon file in $dl_dir/lm, please run :" log "prepare.sh --stage -1 --stop-stage -1" exit -1 fi if [ ! -f $lang_dir/lexicon.txt ]; then (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/librispeech-lexicon.txt | sort | uniq > $lang_dir/lexicon.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi fi