#!/usr/bin/env python3 """ This file computes fbank features of the musan dataset. Its looks for manifests in the directory data/manifests and generated fbank features are saved in data/fbank. """ import os from pathlib import Path from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer, combine from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor def compute_fbank_musan(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") num_jobs = min(15, os.cpu_count()) num_mel_bins = 80 dataset_parts = ( "music", "speech", "noise", ) manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir ) assert manifests is not None musan_cuts_path = output_dir / "cuts_musan.json.gz" if musan_cuts_path.is_file(): print(f"{musan_cuts_path} already exists - skipping") return print("Extracting features for Musan") extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. # create chunks of Musan with duration 5 - 10 seconds musan_cuts = ( CutSet.from_manifests( recordings=combine( part["recordings"] for part in manifests.values() ) ) .cut_into_windows(10.0) .filter(lambda c: c.duration > 5) .compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/feats_musan", num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomHdf5Writer, ) ) musan_cuts.to_json(musan_cuts_path) if __name__ == "__main__": compute_fbank_musan()