#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=60 stage=6 stop_stage=9 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/hi-en dl_dir=$PWD/download espnet_path=/home/wtc7/espnet/egs2/MUCS/asr1/data/hi-en/ . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy vocab_size=400 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: prepare LM files" mkdir -p $dl_dir/lm if [ ! -e $dl_dir/lm/.done ]; then ./local/prepare_lm_files.py --out-dir=$dl_dir/lm --data-path=$espnet_path --mode="train" touch $dl_dir/lm/.done fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare MUCS manifest" # We assume that you have downloaded the MUCS corpus # to $dl_dir/ mkdir -p data/manifests if [ ! -e data/manifests/.mucs.done ]; then # generate lhotse manifests from kaldi style files ./local/prepare_manifest.py "$espnet_path" $nj data/manifests touch data/manifests/.mucs.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for mucs" mkdir -p data/fbank if [ ! -e data/fbank/.mucs.done ]; then ./local/compute_fbank_mucs.py touch data/fbank/.mucs.done fi # exit if [ ! -e data/fbank/.mucs-validated.done ]; then log "Validating data/fbank for mucs" parts=( train test dev ) for part in ${parts[@]}; do python3 ./local/validate_manifest.py \ data/fbank/mucs_cuts_${part}.jsonl.gz done touch data/fbank/.mucs-validated.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/mucs_lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/disambig_L.fst fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" cp download/lm/mucs_vocab_text.txt $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Train LM from training data" lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/lm_3.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm_3.arpa fi if [ ! -f $lang_dir/lm_4.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 4 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm_4.arpa fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lang_bpe_${vocab_size}/lm_3.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lang_bpe_${vocab_size}/lm_4.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" # ./local/compile_hlg.py --lang-dir data/lang_phone # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir fi