nohup: ignoring input - RIR Path: data/manifests/rir.scp - RIR Probability: 0.5 fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall fatal: detected dubious ownership in repository at '/home/hdd2/jenny/ASRToolkit/icefall' To add an exception for this directory, call: git config --global --add safe.directory /home/hdd2/jenny/ASRToolkit/icefall 2025-08-27 10:02:23,634 INFO [train.py:958] (0/3) Training started 2025-08-27 10:02:23,635 INFO [train.py:959] (0/3) Warmup steps: 30000 2025-08-27 10:02:23,635 INFO [train.py:960] (0/3) { "att_rate": 0.0, "attention_dim": 256, "batch_idx_train": 0, "beam_size": 10, "best_train_epoch": -1, "best_train_loss": Infinity, "best_valid_epoch": -1, "best_valid_loss": Infinity, "bpe_dir": "data/lang_bpe_5000", "bucketing_sampler": true, "concatenate_cuts": true, "drop_last": true, "duration_factor": 1.0, "enable_musan": true, "enable_rir": true, "enable_spec_aug": true, "enable_validation": true, "env_info": { "IP address": "127.0.1.1", "hostname": "Attention", "icefall-git-branch": null, "icefall-git-date": null, "icefall-git-sha1": null, "icefall-path": "/tmp/icefall", "k2-build-type": "Release", "k2-git-date": "Mon Jul 14 07:51:57 2025", "k2-git-sha1": "9399d1b01a6309e54b62d885e93209bcd66c1e7d", "k2-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/k2/__init__.py", "k2-version": "1.24.4", "k2-with-cuda": true, "lhotse-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/__init__.py", "lhotse-version": "1.31.0.dev+git.273e312.clean", "python-version": "3.8", "torch-cuda-available": true, "torch-cuda-version": "12.1", "torch-version": "2.4.0+cu121" }, "exp_dir": "conformer_ctc/exp", "feature_dim": 80, "full_libri": true, "gap": 1.0, "input_strategy": "PrecomputedFeatures", "lang_dir": "data/lang_bpe_5000", "log_interval": 50, "lr_factor": 5.0, "manifest_dir": "data/fbank", "master_port": 12345, "max_active_states": 10000, "max_duration": 300, "method": "ctc-decoding", "min_active_states": 30, "mini_libri": false, "nhead": 4, "num_buckets": 200, "num_decoder_layers": 0, "num_epochs": 100, "num_workers": 24, "on_the_fly_feats": false, "output_beam": 8.0, "reduction": "sum", "reset_interval": 200, "return_cuts": true, "rir_cuts_path": "data/manifests/rir.scp", "rir_prob": 0.5, "sanity_check": true, "search_beam": 20.0, "seed": 42, "shuffle": true, "spec_aug_time_warp_factor": 80, "start_epoch": 0, "subsampling_factor": 4, "tensorboard": true, "use_double_scores": true, "use_feat_batchnorm": true, "valid_interval": 5000, "valid_max_duration": 15, "validation_decoding_method": "greedy", "validation_output_beam": 5.0, "validation_search_beam": 10.0, "validation_skip_wer": false, "warm_step": 30000, "weight_decay": 1e-06, "world_size": 3 } 2025-08-27 10:02:23,656 INFO [train.py:958] (2/3) Training started 2025-08-27 10:02:23,656 INFO [train.py:959] (2/3) Warmup steps: 30000 2025-08-27 10:02:23,656 INFO [train.py:960] (2/3) { "att_rate": 0.0, "attention_dim": 256, "batch_idx_train": 0, "beam_size": 10, "best_train_epoch": -1, "best_train_loss": Infinity, "best_valid_epoch": -1, "best_valid_loss": Infinity, "bpe_dir": "data/lang_bpe_5000", "bucketing_sampler": true, "concatenate_cuts": true, "drop_last": true, "duration_factor": 1.0, "enable_musan": true, "enable_rir": true, "enable_spec_aug": true, "enable_validation": true, "env_info": { "IP address": "127.0.1.1", "hostname": "Attention", "icefall-git-branch": null, "icefall-git-date": null, "icefall-git-sha1": null, "icefall-path": "/tmp/icefall", "k2-build-type": "Release", "k2-git-date": "Mon Jul 14 07:51:57 2025", "k2-git-sha1": "9399d1b01a6309e54b62d885e93209bcd66c1e7d", "k2-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/k2/__init__.py", "k2-version": "1.24.4", "k2-with-cuda": true, "lhotse-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/__init__.py", "lhotse-version": "1.31.0.dev+git.273e312.clean", "python-version": "3.8", "torch-cuda-available": true, "torch-cuda-version": "12.1", "torch-version": "2.4.0+cu121" }, "exp_dir": "conformer_ctc/exp", "feature_dim": 80, "full_libri": true, "gap": 1.0, "input_strategy": "PrecomputedFeatures", "lang_dir": "data/lang_bpe_5000", "log_interval": 50, "lr_factor": 5.0, "manifest_dir": "data/fbank", "master_port": 12345, "max_active_states": 10000, "max_duration": 300, "method": "ctc-decoding", "min_active_states": 30, "mini_libri": false, "nhead": 4, "num_buckets": 200, "num_decoder_layers": 0, "num_epochs": 100, "num_workers": 24, "on_the_fly_feats": false, "output_beam": 8.0, "reduction": "sum", "reset_interval": 200, "return_cuts": true, "rir_cuts_path": "data/manifests/rir.scp", "rir_prob": 0.5, "sanity_check": true, "search_beam": 20.0, "seed": 42, "shuffle": true, "spec_aug_time_warp_factor": 80, "start_epoch": 0, "subsampling_factor": 4, "tensorboard": true, "use_double_scores": true, "use_feat_batchnorm": true, "valid_interval": 5000, "valid_max_duration": 15, "validation_decoding_method": "greedy", "validation_output_beam": 5.0, "validation_search_beam": 10.0, "validation_skip_wer": false, "warm_step": 30000, "weight_decay": 1e-06, "world_size": 3 } 2025-08-27 10:02:23,770 INFO [train.py:958] (1/3) Training started 2025-08-27 10:02:23,770 INFO [train.py:959] (1/3) Warmup steps: 30000 2025-08-27 10:02:23,770 INFO [train.py:960] (1/3) { "att_rate": 0.0, "attention_dim": 256, "batch_idx_train": 0, "beam_size": 10, "best_train_epoch": -1, "best_train_loss": Infinity, "best_valid_epoch": -1, "best_valid_loss": Infinity, "bpe_dir": "data/lang_bpe_5000", "bucketing_sampler": true, "concatenate_cuts": true, "drop_last": true, "duration_factor": 1.0, "enable_musan": true, "enable_rir": true, "enable_spec_aug": true, "enable_validation": true, "env_info": { "IP address": "127.0.1.1", "hostname": "Attention", "icefall-git-branch": null, "icefall-git-date": null, "icefall-git-sha1": null, "icefall-path": "/tmp/icefall", "k2-build-type": "Release", "k2-git-date": "Mon Jul 14 07:51:57 2025", "k2-git-sha1": "9399d1b01a6309e54b62d885e93209bcd66c1e7d", "k2-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/k2/__init__.py", "k2-version": "1.24.4", "k2-with-cuda": true, "lhotse-path": "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/lhotse/__init__.py", "lhotse-version": "1.31.0.dev+git.273e312.clean", "python-version": "3.8", "torch-cuda-available": true, "torch-cuda-version": "12.1", "torch-version": "2.4.0+cu121" }, "exp_dir": "conformer_ctc/exp", "feature_dim": 80, "full_libri": true, "gap": 1.0, "input_strategy": "PrecomputedFeatures", "lang_dir": "data/lang_bpe_5000", "log_interval": 50, "lr_factor": 5.0, "manifest_dir": "data/fbank", "master_port": 12345, "max_active_states": 10000, "max_duration": 300, "method": "ctc-decoding", "min_active_states": 30, "mini_libri": false, "nhead": 4, "num_buckets": 200, "num_decoder_layers": 0, "num_epochs": 100, "num_workers": 24, "on_the_fly_feats": false, "output_beam": 8.0, "reduction": "sum", "reset_interval": 200, "return_cuts": true, "rir_cuts_path": "data/manifests/rir.scp", "rir_prob": 0.5, "sanity_check": true, "search_beam": 20.0, "seed": 42, "shuffle": true, "spec_aug_time_warp_factor": 80, "start_epoch": 0, "subsampling_factor": 4, "tensorboard": true, "use_double_scores": true, "use_feat_batchnorm": true, "valid_interval": 5000, "valid_max_duration": 15, "validation_decoding_method": "greedy", "validation_output_beam": 5.0, "validation_search_beam": 10.0, "validation_skip_wer": false, "warm_step": 30000, "weight_decay": 1e-06, "world_size": 3 } 2025-08-27 10:02:24,048 INFO [train.py:1012] (0/3) About to create model 2025-08-27 10:02:24,072 INFO [train.py:1012] (2/3) About to create model 2025-08-27 10:02:24,123 INFO [train.py:1012] (1/3) About to create model /home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}") 2025-08-27 10:02:26,096 INFO [asr_datamodule.py:537] (0/3) About to get the shuffled train-clean-100, train-clean-360 and train-other-500 cuts 2025-08-27 10:02:26,112 INFO [asr_datamodule.py:301] (0/3) Enable MUSAN 2025-08-27 10:02:26,112 INFO [asr_datamodule.py:302] (0/3) About to get Musan cuts /home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}") 2025-08-27 10:02:26,234 INFO [asr_datamodule.py:537] (2/3) About to get the shuffled train-clean-100, train-clean-360 and train-other-500 cuts 2025-08-27 10:02:26,235 INFO [asr_datamodule.py:301] (2/3) Enable MUSAN 2025-08-27 10:02:26,236 INFO [asr_datamodule.py:302] (2/3) About to get Musan cuts /home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/nn/modules/transformer.py:307: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer was not TransformerEncoderLayer warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}") 2025-08-27 10:02:26,238 INFO [asr_datamodule.py:537] (1/3) About to get the shuffled train-clean-100, train-clean-360 and train-other-500 cuts 2025-08-27 10:02:26,239 INFO [asr_datamodule.py:301] (1/3) Enable MUSAN 2025-08-27 10:02:26,239 INFO [asr_datamodule.py:302] (1/3) About to get Musan cuts 2025-08-27 10:02:28,823 INFO [asr_datamodule.py:311] (0/3) Enable RIR (Room Impulse Response) augmentation 2025-08-27 10:02:28,823 INFO [asr_datamodule.py:312] (0/3) Loading RIR paths from data/manifests/rir.scp 2025-08-27 10:02:28,829 INFO [asr_datamodule.py:311] (1/3) Enable RIR (Room Impulse Response) augmentation 2025-08-27 10:02:28,829 INFO [asr_datamodule.py:312] (1/3) Loading RIR paths from data/manifests/rir.scp 2025-08-27 10:02:28,845 INFO [asr_datamodule.py:319] (0/3) Found 60536 RIR files 2025-08-27 10:02:28,851 INFO [asr_datamodule.py:319] (1/3) Found 60536 RIR files 2025-08-27 10:02:29,081 INFO [asr_datamodule.py:333] (0/3) Using cut concatenation with duration factor 1.0 and gap 1.0. 2025-08-27 10:02:29,081 INFO [asr_datamodule.py:333] (1/3) Using cut concatenation with duration factor 1.0 and gap 1.0. 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:348] (0/3) Enable SpecAugment 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:348] (1/3) Enable SpecAugment 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:349] (0/3) Time warp factor: 80 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:349] (1/3) Time warp factor: 80 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:359] (0/3) Num frame mask: 10 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:359] (1/3) Num frame mask: 10 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:379] (0/3) About to create train dataset 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:379] (1/3) About to create train dataset 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:389] (0/3) Train dataset augmentations: Cut transforms: ['CutConcatenate', 'CutMix', 'RandomRIRTransform']; Input transforms: ['SpecAugment'] 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:389] (1/3) Train dataset augmentations: Cut transforms: ['CutConcatenate', 'CutMix', 'RandomRIRTransform']; Input transforms: ['SpecAugment'] 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:393] (0/3) Train dataset: 3 cut transforms, 1 input transforms 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:393] (1/3) Train dataset: 3 cut transforms, 1 input transforms 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:404] (0/3) Using DynamicBucketingSampler. 2025-08-27 10:02:29,082 INFO [asr_datamodule.py:404] (1/3) Using DynamicBucketingSampler. 2025-08-27 10:02:29,203 INFO [asr_datamodule.py:311] (2/3) Enable RIR (Room Impulse Response) augmentation 2025-08-27 10:02:29,204 INFO [asr_datamodule.py:312] (2/3) Loading RIR paths from data/manifests/rir.scp 2025-08-27 10:02:29,228 INFO [asr_datamodule.py:319] (2/3) Found 60536 RIR files 2025-08-27 10:02:29,236 INFO [asr_datamodule.py:333] (2/3) Using cut concatenation with duration factor 1.0 and gap 1.0. 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:348] (2/3) Enable SpecAugment 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:349] (2/3) Time warp factor: 80 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:359] (2/3) Num frame mask: 10 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:379] (2/3) About to create train dataset 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:389] (2/3) Train dataset augmentations: Cut transforms: ['CutConcatenate', 'CutMix', 'RandomRIRTransform']; Input transforms: ['SpecAugment'] 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:393] (2/3) Train dataset: 3 cut transforms, 1 input transforms 2025-08-27 10:02:29,237 INFO [asr_datamodule.py:404] (2/3) Using DynamicBucketingSampler. 2025-08-27 10:02:29,771 INFO [asr_datamodule.py:422] (0/3) About to create train dataloader 2025-08-27 10:02:29,772 INFO [asr_datamodule.py:422] (1/3) About to create train dataloader 2025-08-27 10:02:29,774 INFO [asr_datamodule.py:554] (0/3) About to get dev-clean cuts 2025-08-27 10:02:29,775 INFO [asr_datamodule.py:554] (1/3) About to get dev-clean cuts 2025-08-27 10:02:29,788 INFO [asr_datamodule.py:455] (0/3) Validation max_duration: 15 seconds 2025-08-27 10:02:29,788 INFO [asr_datamodule.py:455] (1/3) Validation max_duration: 15 seconds 2025-08-27 10:02:29,788 INFO [asr_datamodule.py:457] (0/3) About to create dev dataset 2025-08-27 10:02:29,788 INFO [asr_datamodule.py:457] (1/3) About to create dev dataset 2025-08-27 10:02:29,920 INFO [asr_datamodule.py:422] (2/3) About to create train dataloader 2025-08-27 10:02:29,923 INFO [asr_datamodule.py:554] (2/3) About to get dev-clean cuts 2025-08-27 10:02:29,924 INFO [asr_datamodule.py:455] (2/3) Validation max_duration: 15 seconds 2025-08-27 10:02:29,924 INFO [asr_datamodule.py:457] (2/3) About to create dev dataset 2025-08-27 10:02:29,958 INFO [asr_datamodule.py:474] (0/3) About to create dev dataloader 2025-08-27 10:02:29,958 INFO [train.py:1068] (0/3) Validation set size: 2703 utterances 2025-08-27 10:02:29,958 INFO [train.py:1129] (0/3) Sanity check -- see if any of the batches in epoch 0 would cause OOM. 2025-08-27 10:02:29,961 INFO [asr_datamodule.py:474] (1/3) About to create dev dataloader 2025-08-27 10:02:29,961 INFO [train.py:1068] (1/3) Validation set size: 2703 utterances 2025-08-27 10:02:29,961 INFO [train.py:1129] (1/3) Sanity check -- see if any of the batches in epoch 0 would cause OOM. 2025-08-27 10:02:30,094 INFO [asr_datamodule.py:474] (2/3) About to create dev dataloader 2025-08-27 10:02:30,094 INFO [train.py:1068] (2/3) Validation set size: 2703 utterances 2025-08-27 10:02:30,094 INFO [train.py:1129] (2/3) Sanity check -- see if any of the batches in epoch 0 would cause OOM. W0827 10:02:58.158139 127413766444864 torch/multiprocessing/spawn.py:146] Terminating process 1291938 via signal SIGTERM W0827 10:02:58.158930 127413766444864 torch/multiprocessing/spawn.py:146] Terminating process 1291939 via signal SIGTERM Traceback (most recent call last): File "./conformer_ctc/train.py", line 1415, in main() File "./conformer_ctc/train.py", line 1408, in main mp.spawn(run, args=(world_size, args), nprocs=world_size, join=True) File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 282, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method="spawn") File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 238, in start_processes while not context.join(): File "/home/jenny/miniconda3/envs/jenny/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 170, in join raise ProcessExitedException( torch.multiprocessing.spawn.ProcessExitedException: process 0 terminated with signal SIGKILL