#!/usr/bin/env bash set -eou pipefail nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/LibriSpeech # You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it. # You can download them from https://www.openslr.org/12 # # - $dl_dir/lm # This directory contains the following files downloaded from # http://www.openslr.org/resources/11 # # - 3-gram.pruned.1e-7.arpa.gz # - 3-gram.pruned.1e-7.arpa # - 4-gram.arpa.gz # - 4-gram.arpa # - librispeech-vocab.txt # - librispeech-lexicon.txt # # - $do_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All generated files by this script are saved in "data" mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "stage -1: Download LM" ./local/download_lm.py --out-dir=$dl_dir/lm fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download data" # If you have pre-downloaded it to /path/to/LibriSpeech, # you can create a symlink # # ln -sfv /path/to/LibriSpeech $dl_dir/LibriSpeech # if [ ! -d $dl_dir/LibriSpeech/train-other-500 ]; then lhotse download librispeech --full $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare LibriSpeech manifest" # We assume that you have downloaded the LibriSpeech corpus # to $dl_dir/LibriSpeech mkdir -p data/manifests lhotse prepare librispeech -j $nj $dl_dir/LibriSpeech data/manifests fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for librispeech" mkdir -p data/fbank ./local/compute_fbank_librispeech.py fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" mkdir -p data/lang_phone (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/librispeech-lexicon.txt | sort | uniq > data/lang_phone/lexicon.txt if [ ! -f data/lang_phone/L_disambig.pt ]; then ./local/prepare_lang.py fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "State 6: Prepare BPE based lang" mkdir -p data/lang_bpe # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt data/lang_bpe/ if [ ! -f data/lang_bpe/train.txt ]; then log "Generate data for BPE training" files=$( find "data/LibriSpeech/train-clean-100" -name "*.trans.txt" find "data/LibriSpeech/train-clean-360" -name "*.trans.txt" find "data/LibriSpeech/train-other-500" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > data/lang_bpe/train.txt fi python3 ./local/train_bpe_model.py if [ ! -f data/lang_bpe/L_disambig.pt ]; then ./local/prepare_lang_bpe.py fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare bigram P" if [ ! -f data/lang_bpe/corpus.txt ]; then ./local/convert_transcript_to_corpus.py \ --lexicon data/lang_bpe/lexicon.txt \ --transcript data/lang_bpe/train.txt \ --oov "" \ > data/lang_bpe/corpus.txt fi if [ ! -f data/lang_bpe/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text data/lang_bpe/corpus.txt \ -lm data/lang_bpe/P.arpa fi # TODO: Use egs/wsj/s5/utils/lang/ngram_entropy_pruning.py # from kaldi to prune P if it causes OOM later if [ ! -f data/lang_bpe/P-no-prune.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="data/lang_bpe/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ data/lang_bpe/P.arpa > data/lang_bpe/P-no-prune.fst.txt fi thresholds=( 1e-6 1e-7 ) for threshold in ${thresholds[@]}; do if [ ! -f data/lang_bpe/P-pruned.${threshold}.arpa ]; then python3 ./local/ngram_entropy_pruning.py \ -threshold $threshold \ -lm data/lang_bpe/P.arpa \ -write-lm data/lang_bpe/P-pruned.${threshold}.arpa fi if [ ! -f data/lang_bpe/P-pruned.${threshold}.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="data/lang_bpe/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ data/lang_bpe/P-pruned.${threshold}.arpa > data/lang_bpe/P-pruned.${threshold}.fst.txt fi done if [ ! -f data/lang_bpe/P-uni.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="data/lang_bpe/tokens.txt" \ --disambig-symbol='#0' \ --max-order=1 \ data/lang_bpe/P.arpa > data/lang_bpe/P-uni.fst.txt fi ( cd data/lang_bpe; # ln -sfv P-pruned.1e-6.fst.txt P.fst.txt ln -sfv P-no-prune.fst.txt P.fst.txt ) rm -fv data/lang_bpe/P.pt data/lang_bpe/ctc_topo_P.pt fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/3-gram.pruned.1e-7.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ $dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" python3 ./local/compile_hlg.py fi