#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads ONNX models and uses them to decode waves. You can use the following command to get the exported models: ./pruned_transducer_stateless3/export.py \ --exp-dir ./pruned_transducer_stateless3/exp \ --bpe-model data/lang_bpe_500/bpe.model \ --epoch 20 \ --avg 10 \ --onnx 1 Usage of this script: ./pruned_transducer_stateless3/onnx_pretrained.py \ --encoder-model-filename ./pruned_transducer_stateless3/exp/encoder.onnx \ --decoder-model-filename ./pruned_transducer_stateless3/exp/decoder.onnx \ --joiner-model-filename ./pruned_transducer_stateless3/exp/joiner.onnx \ --joiner-encoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_encoder_proj.onnx \ --joiner-decoder-proj-model-filename ./pruned_transducer_stateless3/exp/joiner_decoder_proj.onnx \ --bpe-model ./data/lang_bpe_500/bpe.model \ /path/to/foo.wav \ /path/to/bar.wav """ import argparse import logging import math from typing import List import kaldifeat import numpy as np import onnxruntime as ort import sentencepiece as spm import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--encoder-model-filename", type=str, required=True, help="Path to the encoder onnx model. ", ) parser.add_argument( "--decoder-model-filename", type=str, required=True, help="Path to the decoder onnx model. ", ) parser.add_argument( "--joiner-model-filename", type=str, required=True, help="Path to the joiner onnx model. ", ) parser.add_argument( "--joiner-encoder-proj-model-filename", type=str, required=True, help="Path to the joiner encoder_proj onnx model. ", ) parser.add_argument( "--joiner-decoder-proj-model-filename", type=str, required=True, help="Path to the joiner decoder_proj onnx model. ", ) parser.add_argument( "--bpe-model", type=str, help="""Path to bpe.model.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) parser.add_argument( "--context-size", type=int, default=2, help="Context size of the decoder model", ) return parser def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search( decoder: ort.InferenceSession, joiner: ort.InferenceSession, joiner_encoder_proj: ort.InferenceSession, joiner_decoder_proj: ort.InferenceSession, encoder_out: np.ndarray, encoder_out_lens: np.ndarray, context_size: int, ) -> List[List[int]]: """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. Args: decoder: The decoder model. joiner: The joiner model. joiner_encoder_proj: The joiner encoder projection model. joiner_decoder_proj: The joiner decoder projection model. encoder_out: A 3-D tensor of shape (N, T, C) encoder_out_lens: A 1-D tensor of shape (N,). context_size: The context size of the decoder model. Returns: Return the decoded results for each utterance. """ encoder_out = torch.from_numpy(encoder_out) encoder_out_lens = torch.from_numpy(encoder_out_lens) assert encoder_out.ndim == 3 assert encoder_out.size(0) >= 1, encoder_out.size(0) packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( input=encoder_out, lengths=encoder_out_lens.cpu(), batch_first=True, enforce_sorted=False, ) projected_encoder_out = joiner_encoder_proj.run( [joiner_encoder_proj.get_outputs()[0].name], {joiner_encoder_proj.get_inputs()[0].name: packed_encoder_out.data.numpy()}, )[0] blank_id = 0 # hard-code to 0 batch_size_list = packed_encoder_out.batch_sizes.tolist() N = encoder_out.size(0) assert torch.all(encoder_out_lens > 0), encoder_out_lens assert N == batch_size_list[0], (N, batch_size_list) hyps = [[blank_id] * context_size for _ in range(N)] decoder_input_nodes = decoder.get_inputs() decoder_output_nodes = decoder.get_outputs() joiner_input_nodes = joiner.get_inputs() joiner_output_nodes = joiner.get_outputs() decoder_input = torch.tensor( hyps, dtype=torch.int64, ) # (N, context_size) decoder_out = decoder.run( [decoder_output_nodes[0].name], { decoder_input_nodes[0].name: decoder_input.numpy(), }, )[0].squeeze(1) projected_decoder_out = joiner_decoder_proj.run( [joiner_decoder_proj.get_outputs()[0].name], {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, )[0] projected_decoder_out = torch.from_numpy(projected_decoder_out) offset = 0 for batch_size in batch_size_list: start = offset end = offset + batch_size current_encoder_out = projected_encoder_out[start:end] # current_encoder_out's shape: (batch_size, encoder_out_dim) offset = end projected_decoder_out = projected_decoder_out[:batch_size] logits = joiner.run( [joiner_output_nodes[0].name], { joiner_input_nodes[0].name: current_encoder_out, joiner_input_nodes[1].name: projected_decoder_out.numpy(), }, )[0] logits = torch.from_numpy(logits).squeeze(1).squeeze(1) # logits'shape (batch_size, vocab_size) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: hyps[i].append(v) emitted = True if emitted: # update decoder output decoder_input = [h[-context_size:] for h in hyps[:batch_size]] decoder_input = torch.tensor( decoder_input, dtype=torch.int64, ) decoder_out = decoder.run( [decoder_output_nodes[0].name], { decoder_input_nodes[0].name: decoder_input.numpy(), }, )[0].squeeze(1) projected_decoder_out = joiner_decoder_proj.run( [joiner_decoder_proj.get_outputs()[0].name], {joiner_decoder_proj.get_inputs()[0].name: decoder_out}, )[0] projected_decoder_out = torch.from_numpy(projected_decoder_out) sorted_ans = [h[context_size:] for h in hyps] ans = [] unsorted_indices = packed_encoder_out.unsorted_indices.tolist() for i in range(N): ans.append(sorted_ans[unsorted_indices[i]]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) session_opts = ort.SessionOptions() session_opts.inter_op_num_threads = 1 session_opts.intra_op_num_threads = 1 encoder = ort.InferenceSession( args.encoder_model_filename, sess_options=session_opts, ) decoder = ort.InferenceSession( args.decoder_model_filename, sess_options=session_opts, ) joiner = ort.InferenceSession( args.joiner_model_filename, sess_options=session_opts, ) joiner_encoder_proj = ort.InferenceSession( args.joiner_encoder_proj_model_filename, sess_options=session_opts, ) joiner_decoder_proj = ort.InferenceSession( args.joiner_decoder_proj_model_filename, sess_options=session_opts, ) sp = spm.SentencePieceProcessor() sp.load(args.bpe_model) logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = args.sample_rate opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, expected_sample_rate=args.sample_rate, ) logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) encoder_input_nodes = encoder.get_inputs() encoder_out_nodes = encoder.get_outputs() encoder_out, encoder_out_lens = encoder.run( [encoder_out_nodes[0].name, encoder_out_nodes[1].name], { encoder_input_nodes[0].name: features.numpy(), encoder_input_nodes[1].name: feature_lengths.numpy(), }, ) hyps = greedy_search( decoder=decoder, joiner=joiner, joiner_encoder_proj=joiner_encoder_proj, joiner_decoder_proj=joiner_decoder_proj, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, context_size=args.context_size, ) s = "\n" for filename, hyp in zip(args.sound_files, hyps): words = sp.decode(hyp) s += f"{filename}:\n{words}\n\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()