#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (Yifan Yang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from datetime import datetime from pathlib import Path import torch from lhotse import ( CutSet, KaldifeatFbank, KaldifeatFbankConfig, LilcomChunkyWriter, set_audio_duration_mismatch_tolerance, set_caching_enabled, ) # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--language", type=str, help="""Language of Common Voice""", ) parser.add_argument( "--num-workers", type=int, default=20, help="Number of dataloading workers used for reading the audio.", ) parser.add_argument( "--batch-duration", type=float, default=600.0, help="The maximum number of audio seconds in a batch." "Determines batch size dynamically.", ) parser.add_argument( "--num-splits", type=int, required=True, help="The number of splits of the train subset", ) parser.add_argument( "--start", type=int, default=0, help="Process pieces starting from this number (inclusive).", ) parser.add_argument( "--stop", type=int, default=-1, help="Stop processing pieces until this number (exclusive).", ) return parser.parse_args() def compute_fbank_commonvoice_splits(args): subset = "train" num_splits = args.num_splits language = args.language output_dir = f"data/{language}/fbank/cv-{language}_{subset}_split_{num_splits}" output_dir = Path(output_dir) assert output_dir.exists(), f"{output_dir} does not exist!" num_digits = len(str(num_splits)) start = args.start stop = args.stop if stop < start: stop = num_splits stop = min(stop, num_splits) device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) extractor = KaldifeatFbank(KaldifeatFbankConfig(device=device)) logging.info(f"device: {device}") set_audio_duration_mismatch_tolerance(0.01) # 10ms tolerance set_caching_enabled(False) for i in range(start, stop): idx = f"{i + 1}".zfill(num_digits) logging.info(f"Processing {idx}/{num_splits}") cuts_path = output_dir / f"cv-{language}_cuts_{subset}.{idx}.jsonl.gz" if cuts_path.is_file(): logging.info(f"{cuts_path} exists - skipping") continue raw_cuts_path = output_dir / f"cv-{language}_cuts_{subset}_raw.{idx}.jsonl.gz" logging.info(f"Loading {raw_cuts_path}") cut_set = CutSet.from_file(raw_cuts_path) logging.info("Splitting cuts into smaller chunks.") cut_set = cut_set.trim_to_supervisions( keep_overlapping=False, min_duration=None ) logging.info("Computing features") cut_set = cut_set.compute_and_store_features_batch( extractor=extractor, storage_path=f"{output_dir}/cv-{language}_feats_{subset}_{idx}", num_workers=args.num_workers, batch_duration=args.batch_duration, storage_type=LilcomChunkyWriter, overwrite=True, ) logging.info(f"Saving to {cuts_path}") cut_set.to_file(cuts_path) def main(): formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) args = get_args() logging.info(vars(args)) compute_fbank_commonvoice_splits(args) if __name__ == "__main__": main()