#!/usr/bin/env bash # Copyright 2023 Johns Hopkins University (Amir Hussein) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) set -eou pipefail nj=20 stage=0 stop_stage=7 # We assume dl_dir (download dir) contains the following # directories and files. # # - $dl_dir/cts # # You can download the data from # # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # dl_dir=cts . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 5000 ) st_vocab_sizes=( 4000 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" # Download callhome_spanish, fisher_spanish iwslt22_ta and HKUST from LDC # # you can create a symlink # # ln -sfv /path/to/data $dl_dir/data # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/ # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi fbank=data/fbank manifests=data/manifests mkdir -p $manifests sets="hkust iwslt-ta callhome-sp fisher-sp" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Prepare telephone manifest" # We assume that you have downloaded callhome_spanish, fisher_spanish iwslt22_ta and hkust to $dl_dir/ for set in $sets; do log "Prepare $set manifests" if [[ "$set" == "iwslt-ta" ]]; then if [ ! -d "iwslt22-dialect" ]; then echo "Splits directory (iwslt22-dialect) does not exist" echo "Run: git clone https://github.com/kevinduh/iwslt22-dialect" exit 1 else lhotse prepare "$set" "$dl_dir/$set" iwslt22-dialect "$manifests" fi else lhotse prepare "$set" "$dl_dir/$set" "$manifests" # validate recordings and supervisions fi # python local/cuts_validate.py \ # --sup "${manifests}/supervisions.jsonl.gz" \ # --rec "${manifests}/recordings.jsonl.gz" \ # --savecut "${manifests}/cuts_${set}.jsonl.gz" done fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then if [ ! -f ${manifests}/cut_train.jsonl.gz ]; then log "Combining conversational data to create train, dev sets" # combine train lhotse combine $manifests/iwslt-ta_supervisions_train.jsonl.gz $manifests/hkust_supervisions_train.jsonl.gz $manifests/fisher-sp_supervisions_train.jsonl.gz ${manifests}/cts_supervisions_train.jsonl.gz lhotse combine $manifests/iwslt-ta_recordings_train.jsonl.gz $manifests/hkust_recordings_train.jsonl.gz $manifests/fisher-sp_recordings_train.jsonl.gz ${manifests}/cts_recordings_train.jsonl.gz # python local/cuts_validate.py --sup $manifests/cts_supervisions_train.jsonl.gz --rec ${manifests}/cts_recordings_train.jsonl.gz # combine dev lhotse combine $manifests/iwslt-ta_supervisions_dev1.jsonl.gz $manifests/hkust_supervisions_dev1.jsonl.gz $manifests/fisher-sp_supervisions_dev.jsonl.gz ${manifests}/cts_supervisions_dev.jsonl.gz lhotse combine $manifests/iwslt-ta_recordings_dev1.jsonl.gz $manifests/fisher-spanish_recordings_dev.jsonl.gz $manifests/hkust_recordings_dev1.jsonl.gz $manifests/fisher-sp_recordings_dev.jsonl.gz ${manifests}/cts_recordings_dev.jsonl.gz # python local/cuts_validate.py --sup ${manifests}/cts_supervisions_dev.jsonl.gz --rec ${manifests}/cts_recordings_dev.jsonl.gz fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f ${manifests}/musan_recordings_speech.jsonl.gz ]; then mkdir -p $manifests lhotse prepare musan $dl_dir/musan $manifests fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank features" mkdir -p ${fbank} ./local/compute_fbank_gpu.py ./local/compute_fbank_gpu.py --test fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" ./local/compute_fbank_musan.py fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p ${lang_dir} cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate text for BPE training from data/fbank/cuts_train.jsonl.gz" python local/prepare_transcripts.py --cut ${fbank}/cuts_train.jsonl.gz --langdir ${lang_dir} fi ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare BPE ST based lang" for vocab_size in ${st_vocab_sizes[@]}; do lang_dir=data/lang_st_bpe_${vocab_size} mkdir -p ${lang_dir} if [ ! -f $lang_dir/st_words.txt ]; then log "Generate text for BPE training from data/fbank/cuts_train.jsonl.gz" python local/prepare_st_transcripts.py --cut ${fbank}/cuts_train.jsonl.gz --langdir ${lang_dir} fi ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/st_words.txt done fi