#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file computes fbank features of the aidatatang_200zh dataset. It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ import argparse import logging import os from pathlib import Path import torch from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def compute_fbank_aidatatang_200zh(num_mel_bins: int = 80): src_dir = Path("data/manifests") output_dir = Path("data/fbank") num_jobs = min(15, os.cpu_count()) dataset_parts = ( "train", "test", "dev", ) prefix = "aidatatang" suffix = "jsonl.gz" manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir, prefix=prefix, suffix=suffix, ) assert manifests is not None assert len(manifests) == len(dataset_parts), ( len(manifests), len(dataset_parts), list(manifests.keys()), dataset_parts, ) extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. for partition, m in manifests.items(): if (output_dir / f"{prefix}_cuts_{partition}.{suffix}").is_file(): logging.info(f"{partition} already exists - skipping.") continue logging.info(f"Processing {partition}") for sup in m["supervisions"]: sup.custom = {"origin": "aidatatang_200zh"} cut_set = CutSet.from_manifests( recordings=m["recordings"], supervisions=m["supervisions"], ) if "train" in partition: cut_set = ( cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/{prefix}_feats_{partition}", # when an executor is specified, make more partitions num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomChunkyWriter, ) cut_set.to_file(output_dir / f"{prefix}_cuts_{partition}.{suffix}") def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--num-mel-bins", type=int, default=80, help="""The number of mel bins for Fbank""", ) return parser.parse_args() if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) args = get_args() compute_fbank_aidatatang_200zh(num_mel_bins=args.num_mel_bins)