# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from pathlib import Path from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn from torch.cuda.amp import GradScaler from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler def save_checkpoint( filename: Path, model: Union[nn.Module, DDP], params: Optional[Dict[str, Any]] = None, optimizer: Optional[Optimizer] = None, scheduler: Optional[_LRScheduler] = None, scaler: Optional[GradScaler] = None, rank: int = 0, ) -> None: """Save training information to a file. Args: filename: The checkpoint filename. model: The model to be saved. We only save its `state_dict()`. params: User defined parameters, e.g., epoch, loss. optimizer: The optimizer to be saved. We only save its `state_dict()`. scheduler: The scheduler to be saved. We only save its `state_dict()`. scalar: The GradScaler to be saved. We only save its `state_dict()`. rank: Used in DDP. We save checkpoint only for the node whose rank is 0. Returns: Return None. """ if rank != 0: return logging.info(f"Saving checkpoint to {filename}") if isinstance(model, DDP): model = model.module checkpoint = { "model": model.state_dict(), "optimizer": optimizer.state_dict() if optimizer is not None else None, "scheduler": scheduler.state_dict() if scheduler is not None else None, "grad_scaler": scaler.state_dict() if scaler is not None else None, } if params: for k, v in params.items(): assert k not in checkpoint checkpoint[k] = v torch.save(checkpoint, filename) def load_checkpoint( filename: Path, model: nn.Module, optimizer: Optional[Optimizer] = None, scheduler: Optional[_LRScheduler] = None, scaler: Optional[GradScaler] = None, ) -> Dict[str, Any]: """ TODO: document it """ logging.info(f"Loading checkpoint from {filename}") checkpoint = torch.load(filename, map_location="cpu") if next(iter(checkpoint["model"])).startswith("module."): logging.info("Loading checkpoint saved by DDP") dst_state_dict = model.state_dict() src_state_dict = checkpoint["model"] for key in dst_state_dict.keys(): src_key = "{}.{}".format("module", key) dst_state_dict[key] = src_state_dict.pop(src_key) assert len(src_state_dict) == 0 model.load_state_dict(dst_state_dict, strict=False) else: model.load_state_dict(checkpoint["model"], strict=False) checkpoint.pop("model") def load(name, obj): s = checkpoint.get(name, None) if obj and s: obj.load_state_dict(s) checkpoint.pop(name) load("optimizer", optimizer) load("scheduler", scheduler) load("grad_scaler", scaler) return checkpoint def average_checkpoints(filenames: List[Path]) -> dict: """Average a list of checkpoints. Args: filenames: Filenames of the checkpoints to be averaged. We assume all checkpoints are saved by :func:`save_checkpoint`. Returns: Return a dict (i.e., state_dict) which is the average of all model state dicts contained in the checkpoints. """ n = len(filenames) avg = torch.load(filenames[0], map_location="cpu")["model"] for i in range(1, n): state_dict = torch.load(filenames[i], map_location="cpu")["model"] for k in avg: avg[k] += state_dict[k] for k in avg: if avg[k].is_floating_point(): avg[k] /= n else: avg[k] //= n return avg