# Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file replaces various modules in a model. Specifically, ActivationBalancer is replaced with an identity operator; Whiten is also replaced with an identity operator; BasicNorm is replaced by a module with `exp` removed. """ import copy from typing import List import torch import torch.nn as nn from scaling import ( ActivationBalancer, BasicNorm, Whiten, ) class NonScaledNorm(nn.Module): """See BasicNorm for doc""" def __init__( self, num_channels: int, eps_exp: float, channel_dim: int = -1, # CAUTION: see documentation. ): super().__init__() self.num_channels = num_channels self.channel_dim = channel_dim self.eps_exp = eps_exp def forward(self, x: torch.Tensor) -> torch.Tensor: if not torch.jit.is_tracing(): assert x.shape[self.channel_dim] == self.num_channels scales = ( torch.mean(x * x, dim=self.channel_dim, keepdim=True) + self.eps_exp ).pow(-0.5) return x * scales def convert_basic_norm(basic_norm: BasicNorm) -> NonScaledNorm: assert isinstance(basic_norm, BasicNorm), type(BasicNorm) norm = NonScaledNorm( num_channels=basic_norm.num_channels, eps_exp=basic_norm.eps.data.exp().item(), channel_dim=basic_norm.channel_dim, ) return norm # Copied from https://pytorch.org/docs/1.9.0/_modules/torch/nn/modules/module.html#Module.get_submodule # noqa # get_submodule was added to nn.Module at v1.9.0 def get_submodule(model, target): if target == "": return model atoms: List[str] = target.split(".") mod: torch.nn.Module = model for item in atoms: if not hasattr(mod, item): raise AttributeError( mod._get_name() + " has no " "attribute `" + item + "`" ) mod = getattr(mod, item) if not isinstance(mod, torch.nn.Module): raise AttributeError("`" + item + "` is not " "an nn.Module") return mod def convert_scaled_to_non_scaled( model: nn.Module, inplace: bool = False, ): """ Args: model: The model to be converted. inplace: If True, the input model is modified inplace. If False, the input model is copied and we modify the copied version. Return: Return a model without scaled layers. """ if not inplace: model = copy.deepcopy(model) d = {} for name, m in model.named_modules(): if isinstance(m, BasicNorm): d[name] = convert_basic_norm(m) elif isinstance(m, (ActivationBalancer, Whiten)): d[name] = nn.Identity() for k, v in d.items(): if "." in k: parent, child = k.rsplit(".", maxsplit=1) setattr(get_submodule(model, parent), child, v) else: setattr(model, k, v) return model