#!/usr/bin/env bash # Prepare script for MLS English ASR recipe in icefall export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 # Configuration for BPE tokenizer vocab_sizes=(500) # Directory where dataset will be downloaded dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data/". mkdir -p data/manifests data/fbank data/audio data/lang log() { local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${LINENO}:${FUNCNAME[1]}) $*" } log "Starting MLS English data preparation" # Stage 0: Download corpus if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download MLS English dataset" if [ ! -d $dl_dir/mls_english ]; then git clone https://huggingface.co/datasets/parler-tts/mls_eng \ $dl_dir/mls_english || { log "Failed to download MLS English dataset"; exit 1; } fi fi # Stage 1: Compute fbank & emit manifests if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Compute & validate MLS English fbank" # we already did `mkdir -p data/manifests data/fbank data/audio` above if [ ! -e data/fbank/.mls_eng-fbank.done ]; then python local/compute_fbank_mls_english.py \ --manifest-dir data/manifests \ --audio-dir data/audio \ --dl-dir $dl_dir/mls_english \ --fbank-dir data/fbank # Validate each split’s manifest for split in train dev test; do python local/validate_manifest.py \ --manifest data/manifests/mls_eng_cuts_${split}.jsonl.gz done touch data/fbank/.mls_eng-fbank.done log "fbank + manifest generation complete." else log "Skipping: fbank already done (data/fbank/.mls_eng-fbank.done exists)." fi fi # Stage 2: Prepare transcript for BPE if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Generate transcript for BPE" if [ ! -f data/lang/transcript.txt ]; then ./local/utils/generate_transcript.py --lang-dir data/lang fi fi # Stage 3: Train BPE models if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Train BPE models" for vocab_size in "${vocab_sizes[@]}"; do bpe_dir=data/lang_bpe_${vocab_size} mkdir -p $bpe_dir if [ ! -f $bpe_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $bpe_dir \ --vocab-size $vocab_size \ --transcript data/lang/transcript.txt fi done fi log "MLS English data preparation completed successfully"