#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn class VisualNet(torch.nn.Module): def __init__(self, num_classes, dropout_p=0.1): super(VisualNet, self).__init__() self.num_classes = num_classes self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2)) self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2)) self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1)) self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2)) self.gru1 = nn.GRU(96 * 4 * 8, 256, 1, bidirectional=True) self.gru2 = nn.GRU(512, 256, 1, bidirectional=True) self.FC = nn.Linear(512, self.num_classes) self.dropout_p = dropout_p self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout(self.dropout_p) self.dropout3d = nn.Dropout3d(self.dropout_p) def forward(self, x): x = self.conv1(x) x = self.relu(x) x = self.dropout3d(x) x = self.pool1(x) x = self.conv2(x) x = self.relu(x) x = self.dropout3d(x) x = self.pool2(x) x = self.conv3(x) x = self.relu(x) x = self.dropout3d(x) x = self.pool3(x) # (B, C, T, H, W)->(T, B, C, H, W) x = x.permute(2, 0, 1, 3, 4).contiguous() # (B, C, T, H, W)->(T, B, C*H*W) x = x.view(x.size(0), x.size(1), -1) self.gru1.flatten_parameters() self.gru2.flatten_parameters() x, h = self.gru1(x) x = self.dropout(x) x, h = self.gru2(x) x = self.dropout(x) x = x.permute(1, 0, 2).contiguous() x = self.FC(x) x = nn.functional.log_softmax(x, dim=-1) return x