#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=0 stop_stage=0 . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download whisper-large-v2 aishell 1 fbank feature from huggingface" # pip install huggingface_hub['cli'] # for aishell 1 huggingface-cli download --repo-type dataset --local-dir data yuekai/aishell_whisper_fbank_lhotse fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "stage 1: Download whisper-large-v2 multi-hans-zh fbank feature from huggingface" # for multi-hans-zh huggingface-cli download --repo-type dataset --local-dir data/fbank yuekai/wenetspeech_whisper_fbank_lhotse huggingface-cli download --repo-type dataset --local-dir data/fbank yuekai/multi_hans_zh_whisper_fbank_lhotse huggingface-cli download --repo-type dataset --local-dir data/fbank yuekai/alimeeting_aishell4_training_whisper_fbank_lhotse fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "stage 2: Download whisper-large-v2 speechio test sets fbank feature from huggingface" # for speechio test sets mkdir data_speechio huggingface-cli download --repo-type model --local-dir data_speechio yuekai/icefall_asr_speechio mv data_speechio/fbank/* data/fbank fi