#!/usr/bin/env python3 # flake8: noqa # # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang, Zengwei Yao) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./lstm_transducer_stateless2/ncnn-decode.py \ --bpe-model-filename ./data/lang_bpe_500/bpe.model \ --encoder-param-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace-iter-468000-avg-16-pnnx.ncnn.param \ --encoder-bin-filename ./lstm_transducer_stateless2/exp/encoder_jit_trace-iter-468000-avg-16-pnnx.ncnn.bin \ --decoder-param-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace-iter-468000-avg-16-pnnx.ncnn.param \ --decoder-bin-filename ./lstm_transducer_stateless2/exp/decoder_jit_trace-iter-468000-avg-16-pnnx.ncnn.bin \ --joiner-param-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace-iter-468000-avg-16-pnnx.ncnn.param \ --joiner-bin-filename ./lstm_transducer_stateless2/exp/joiner_jit_trace-iter-468000-avg-16-pnnx.ncnn.bin \ ./test_wavs/1089-134686-0001.wav """ import argparse import logging from typing import List import kaldifeat import ncnn import sentencepiece as spm import torch import torchaudio def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--bpe-model-filename", type=str, help="Path to bpe.model", ) parser.add_argument( "--encoder-param-filename", type=str, help="Path to encoder.ncnn.param", ) parser.add_argument( "--encoder-bin-filename", type=str, help="Path to encoder.ncnn.bin", ) parser.add_argument( "--decoder-param-filename", type=str, help="Path to decoder.ncnn.param", ) parser.add_argument( "--decoder-bin-filename", type=str, help="Path to decoder.ncnn.bin", ) parser.add_argument( "--joiner-param-filename", type=str, help="Path to joiner.ncnn.param", ) parser.add_argument( "--joiner-bin-filename", type=str, help="Path to joiner.ncnn.bin", ) parser.add_argument( "sound_filename", type=str, help="Path to foo.wav", ) return parser.parse_args() class Model: def __init__(self, args): self.init_encoder(args) self.init_decoder(args) self.init_joiner(args) def init_encoder(self, args): encoder_net = ncnn.Net() encoder_net.opt.use_packing_layout = False encoder_net.opt.use_fp16_storage = False encoder_net.opt.num_threads = 4 encoder_param = args.encoder_param_filename encoder_model = args.encoder_bin_filename encoder_net.load_param(encoder_param) encoder_net.load_model(encoder_model) self.encoder_net = encoder_net def init_decoder(self, args): decoder_param = args.decoder_param_filename decoder_model = args.decoder_bin_filename decoder_net = ncnn.Net() decoder_net.opt.use_packing_layout = False decoder_net.opt.num_threads = 4 decoder_net.load_param(decoder_param) decoder_net.load_model(decoder_model) self.decoder_net = decoder_net def init_joiner(self, args): joiner_param = args.joiner_param_filename joiner_model = args.joiner_bin_filename joiner_net = ncnn.Net() joiner_net.opt.use_packing_layout = False joiner_net.opt.num_threads = 4 joiner_net.load_param(joiner_param) joiner_net.load_model(joiner_model) self.joiner_net = joiner_net def run_encoder(self, x, states): with self.encoder_net.create_extractor() as ex: ex.input("in0", ncnn.Mat(x.numpy()).clone()) x_lens = torch.tensor([x.size(0)], dtype=torch.float32) ex.input("in1", ncnn.Mat(x_lens.numpy()).clone()) ex.input("in2", ncnn.Mat(states[0].numpy()).clone()) ex.input("in3", ncnn.Mat(states[1].numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") assert ret == 0, ret ret, ncnn_out1 = ex.extract("out1") assert ret == 0, ret ret, ncnn_out2 = ex.extract("out2") assert ret == 0, ret ret, ncnn_out3 = ex.extract("out3") assert ret == 0, ret encoder_out = torch.from_numpy(ncnn_out0.numpy()).clone() encoder_out_lens = torch.from_numpy(ncnn_out1.numpy()).to(torch.int32) hx = torch.from_numpy(ncnn_out2.numpy()).clone() cx = torch.from_numpy(ncnn_out3.numpy()).clone() return encoder_out, encoder_out_lens, hx, cx def run_decoder(self, decoder_input): assert decoder_input.dtype == torch.int32 with self.decoder_net.create_extractor() as ex: ex.input("in0", ncnn.Mat(decoder_input.numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") assert ret == 0, ret decoder_out = torch.from_numpy(ncnn_out0.numpy()).clone() return decoder_out def run_joiner(self, encoder_out, decoder_out): with self.joiner_net.create_extractor() as ex: ex.input("in0", ncnn.Mat(encoder_out.numpy()).clone()) ex.input("in1", ncnn.Mat(decoder_out.numpy()).clone()) ret, ncnn_out0 = ex.extract("out0") assert ret == 0, ret joiner_out = torch.from_numpy(ncnn_out0.numpy()).clone() return joiner_out def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search(model: Model, encoder_out: torch.Tensor): assert encoder_out.ndim == 2 T = encoder_out.size(0) context_size = 2 blank_id = 0 # hard-code to 0 hyp = [blank_id] * context_size decoder_input = torch.tensor(hyp, dtype=torch.int32) # (1, context_size) decoder_out = model.run_decoder(decoder_input).squeeze(0) # print(decoder_out.shape) # (512,) for t in range(T): encoder_out_t = encoder_out[t] joiner_out = model.run_joiner(encoder_out_t, decoder_out) # print(joiner_out.shape) # [500] y = joiner_out.argmax(dim=0).tolist() if y != blank_id: hyp.append(y) decoder_input = hyp[-context_size:] decoder_input = torch.tensor(decoder_input, dtype=torch.int32) decoder_out = model.run_decoder(decoder_input).squeeze(0) return hyp[context_size:] def main(): args = get_args() logging.info(vars(args)) model = Model(args) sp = spm.SentencePieceProcessor() sp.load(args.bpe_model_filename) sound_file = args.sound_filename sample_rate = 16000 logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = sample_rate opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {sound_file}") wave_samples = read_sound_files( filenames=[sound_file], expected_sample_rate=sample_rate, )[0] logging.info("Decoding started") features = fbank(wave_samples) num_encoder_layers = 12 d_model = 512 rnn_hidden_size = 1024 states = ( torch.zeros(num_encoder_layers, d_model), torch.zeros( num_encoder_layers, rnn_hidden_size, ), ) encoder_out, encoder_out_lens, hx, cx = model.run_encoder(features, states) hyp = greedy_search(model, encoder_out) logging.info(sound_file) logging.info(sp.decode(hyp)) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()