#!/usr/bin/env python3 # Copyright 2022 Johns Hopkins University (authors: Desh Raj) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file computes fbank features of the LibriCSS dataset. It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ import logging from pathlib import Path import pyloudnorm as pyln import torch import torch.multiprocessing from lhotse import LilcomChunkyWriter, load_manifest_lazy from lhotse.features.kaldifeat import ( KaldifeatFbank, KaldifeatFbankConfig, KaldifeatFrameOptions, KaldifeatMelOptions, ) # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) torch.multiprocessing.set_sharing_strategy("file_system") def compute_fbank_libricss(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") sampling_rate = 16000 num_mel_bins = 80 extractor = KaldifeatFbank( KaldifeatFbankConfig( frame_opts=KaldifeatFrameOptions(sampling_rate=sampling_rate), mel_opts=KaldifeatMelOptions(num_bins=num_mel_bins), device="cuda", ) ) logging.info("Reading manifests") cuts_ihm_mix = load_manifest_lazy( src_dir / "libricss-ihm-mix_segments_all.jsonl.gz" ) cuts_sdm = load_manifest_lazy(src_dir / "libricss-sdm_segments_all.jsonl.gz") for name, cuts in [("ihm-mix", cuts_ihm_mix), ("sdm", cuts_sdm)]: dev_cuts = cuts.filter(lambda c: "session0" in c.id) test_cuts = cuts.filter(lambda c: "session0" not in c.id) # If SDM cuts, apply loudness normalization if name == "sdm": dev_cuts = dev_cuts.normalize_loudness(target=-23.0) test_cuts = test_cuts.normalize_loudness(target=-23.0) logging.info(f"Extracting fbank features for {name} dev cuts") _ = dev_cuts.compute_and_store_features_batch( extractor=extractor, storage_path=output_dir / f"libricss-{name}_feats_dev", manifest_path=src_dir / f"cuts_dev_libricss-{name}.jsonl.gz", batch_duration=500, num_workers=2, storage_type=LilcomChunkyWriter, overwrite=True, ) logging.info(f"Extracting fbank features for {name} test cuts") _ = test_cuts.compute_and_store_features_batch( extractor=extractor, storage_path=output_dir / f"libricss-{name}_feats_test", manifest_path=src_dir / f"cuts_test_libricss-{name}.jsonl.gz", batch_duration=2000, num_workers=4, storage_type=LilcomChunkyWriter, overwrite=True, ) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_libricss()