#!/usr/bin/env python3 # # Copyright 2021 Xiaomi Corporation (Author: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import warnings from pathlib import Path from typing import List, Optional, Tuple import k2 import numpy as np import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import LibriSpeechAsrDataModule from beam_search import Hypothesis, HypothesisList, get_hyps_shape from emformer import LOG_EPSILON, stack_states, unstack_states from streaming_feature_extractor import FeatureExtractionStream from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( average_checkpoints, find_checkpoints, load_checkpoint, ) from icefall.utils import AttributeDict, setup_logger def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=28, help="It specifies the checkpoint to use for decoding." "Note: Epoch counts from 0.", ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch'. ", ) parser.add_argument( "--avg-last-n", type=int, default=0, help="""If positive, --epoch and --avg are ignored and it will use the last n checkpoints exp_dir/checkpoint-xxx.pt where xxx is the number of processed batches while saving that checkpoint. """, ) parser.add_argument( "--exp-dir", type=str, default="transducer_emformer/exp", help="The experiment dir", ) parser.add_argument( "--bpe-model", type=str, default="data/lang_bpe_500/bpe.model", help="Path to the BPE model", ) parser.add_argument( "--decoding-method", type=str, default="greedy_search", help="""Possible values are: - greedy_search - beam_search - modified_beam_search - fast_beam_search """, ) parser.add_argument( "--beam-size", type=int, default=4, help="""An interger indicating how many candidates we will keep for each frame. Used only when --decoding-method is beam_search or modified_beam_search.""", ) parser.add_argument( "--beam", type=float, default=4, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-contexts", type=int, default=4, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-states", type=int, default=8, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", type=int, default=1, help="""Maximum number of symbols per frame. Used only when --decoding_method is greedy_search""", ) parser.add_argument( "--sampling-rate", type=float, default=16000, help="Sample rate of the audio", ) add_model_arguments(parser) return parser class StreamingAudioSamples(object): """This class takes as input a list of audio samples and returns them in a streaming fashion. """ def __init__(self, samples: List[torch.Tensor]) -> None: """ Args: samples: A list of audio samples. Each entry is a 1-D tensor of dtype torch.float32, containing the audio samples of an utterance. """ self.samples = samples self.cur_indexes = [0] * len(self.samples) @property def done(self) -> bool: """Return True if all samples have been processed. Return False otherwise. """ for i, samples in zip(self.cur_indexes, self.samples): if i < samples.numel(): return False return True def get_next(self) -> List[torch.Tensor]: """Return a list of audio samples. Each entry may have different lengths. It is OK if an entry contains no samples at all, which means it reaches the end of the utterance. """ ans = [] num = [1024] * len(self.samples) for i in range(len(self.samples)): start = self.cur_indexes[i] end = start + num[i] self.cur_indexes[i] = end s = self.samples[i][start:end] ans.append(s) return ans class StreamList(object): def __init__( self, batch_size: int, context_size: int, decoding_method: str, ): """ Args: batch_size: Size of this batch. context_size: Context size of the RNN-T decoder model. decoding_method: Decoding method. The possible values are: - greedy_search - modified_beam_search """ self.streams = [ FeatureExtractionStream( context_size=context_size, decoding_method=decoding_method ) for _ in range(batch_size) ] def __getitem__(self, i) -> FeatureExtractionStream: return self.streams[i] @property def done(self) -> bool: """Return True if all streams have reached end of utterance. That is, no more audio samples are available for all utterances. """ return all(stream.done for stream in self.streams) def accept_waveform( self, audio_samples: List[torch.Tensor], sampling_rate: float, ): """Feed audio samples to each stream. Args: audio_samples: A list of 1-D tensors containing the audio samples for each utterance in the batch. If an entry is empty, it means end-of-utterance has been reached. sampling_rate: Sampling rate of the given audio samples. """ assert len(audio_samples) == len(self.streams) for stream, samples in zip(self.streams, audio_samples): if stream.done: assert samples.numel() == 0 continue stream.accept_waveform( sampling_rate=sampling_rate, waveform=samples, ) if samples.numel() == 0: stream.input_finished() def build_batch( self, chunk_length: int, segment_length: int, ) -> Tuple[Optional[torch.Tensor], Optional[List[FeatureExtractionStream]]]: """ Args: chunk_length: Number of frames for each chunk. It equals to ``segment_length + right_context_length``. segment_length Number of frames for each segment. Returns: Return a tuple containing: - features, a 3-D tensor of shape ``(num_active_streams, T, C)`` - active_streams, a list of active streams. We say a stream is active when it has enough feature frames to be fed into the encoder model. """ feature_list = [] stream_list = [] for stream in self.streams: if len(stream.feature_frames) >= chunk_length: # this_chunk is a list of tensors, each of which # has a shape (1, feature_dim) chunk = stream.feature_frames[:chunk_length] stream.feature_frames = stream.feature_frames[segment_length:] features = torch.cat(chunk, dim=0) feature_list.append(features) stream_list.append(stream) elif stream.done and len(stream.feature_frames) > 0: chunk = stream.feature_frames[:chunk_length] stream.feature_frames = [] features = torch.cat(chunk, dim=0) features = torch.nn.functional.pad( features, (0, 0, 0, chunk_length - features.size(0)), mode="constant", value=LOG_EPSILON, ) feature_list.append(features) stream_list.append(stream) if len(feature_list) == 0: return None, None features = torch.stack(feature_list, dim=0) return features, stream_list def greedy_search( model: nn.Module, streams: List[FeatureExtractionStream], encoder_out: torch.Tensor, sp: spm.SentencePieceProcessor, ): """ Args: model: The RNN-T model. streams: A list of stream objects. encoder_out: A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of the encoder model. sp: The BPE model. """ assert len(streams) == encoder_out.size(0) assert encoder_out.ndim == 3 blank_id = model.decoder.blank_id context_size = model.decoder.context_size device = model.device T = encoder_out.size(1) if streams[0].decoder_out is None: for stream in streams: stream.hyp = [blank_id] * context_size decoder_input = torch.tensor( [stream.hyp[-context_size:] for stream in streams], device=device, dtype=torch.int64, ) decoder_out = model.decoder(decoder_input, need_pad=False).squeeze(1) # decoder_out is of shape (N, decoder_out_dim) else: decoder_out = torch.stack( [stream.decoder_out for stream in streams], dim=0, ) for t in range(T): current_encoder_out = encoder_out[:, t] # current_encoder_out's shape: (batch_size, encoder_out_dim) logits = model.joiner(current_encoder_out, decoder_out) # logits'shape (batch_size, vocab_size) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: streams[i].hyp.append(v) emitted = True if emitted: # update decoder output decoder_input = torch.tensor( [stream.hyp[-context_size:] for stream in streams], device=device, dtype=torch.int64, ) decoder_out = model.decoder( decoder_input, need_pad=False, ).squeeze(1) for k, stream in enumerate(streams): result = sp.decode(stream.decoding_result()) logging.info(f"Partial result {k}:\n{result}") decoder_out_list = decoder_out.unbind(dim=0) for i, d in enumerate(decoder_out_list): streams[i].decoder_out = d def modified_beam_search( model: nn.Module, streams: List[FeatureExtractionStream], encoder_out: torch.Tensor, sp: spm.SentencePieceProcessor, beam: int = 4, ): """ Args: model: The RNN-T model. streams: A list of stream objects. encoder_out: A 3-D tensor of shape (N, T, encoder_out_dim) containing the output of the encoder model. sp: The BPE model. beam: Number of active paths during the beam search. """ assert encoder_out.ndim == 3, encoder_out.shape assert len(streams) == encoder_out.size(0) blank_id = model.decoder.blank_id context_size = model.decoder.context_size device = model.device batch_size = len(streams) T = encoder_out.size(1) for stream in streams: if len(stream.hyps) == 0: stream.hyps.add( Hypothesis( ys=[blank_id] * context_size, log_prob=torch.zeros(1, dtype=torch.float32, device=device), ) ) B = [stream.hyps for stream in streams] for t in range(T): current_encoder_out = encoder_out[:, t] # current_encoder_out's shape: (batch_size, encoder_out_dim) hyps_shape = get_hyps_shape(B).to(device) A = [list(b) for b in B] B = [HypothesisList() for _ in range(batch_size)] ys_log_probs = torch.stack( [hyp.log_prob.reshape(1) for hyps in A for hyp in hyps], dim=0 ) # (num_hyps, 1) decoder_input = torch.tensor( [hyp.ys[-context_size:] for hyps in A for hyp in hyps], device=device, dtype=torch.int64, ) # (num_hyps, context_size) decoder_out = model.decoder(decoder_input, need_pad=False).squeeze(1) # decoder_out is of shape (num_hyps, decoder_output_dim) # Note: For torch 1.7.1 and below, it requires a torch.int64 tensor # as index, so we use `to(torch.int64)` below. current_encoder_out = torch.index_select( current_encoder_out, dim=0, index=hyps_shape.row_ids(1).to(torch.int64), ) # (num_hyps, encoder_out_dim) logits = model.joiner(current_encoder_out, decoder_out) # logits is of shape (num_hyps, vocab_size) log_probs = logits.log_softmax(dim=-1) # (num_hyps, vocab_size) log_probs.add_(ys_log_probs) vocab_size = log_probs.size(-1) log_probs = log_probs.reshape(-1) row_splits = hyps_shape.row_splits(1) * vocab_size log_probs_shape = k2.ragged.create_ragged_shape2( row_splits=row_splits, cached_tot_size=log_probs.numel() ) ragged_log_probs = k2.RaggedTensor( shape=log_probs_shape, value=log_probs ) for i in range(batch_size): topk_log_probs, topk_indexes = ragged_log_probs[i].topk(beam) with warnings.catch_warnings(): warnings.simplefilter("ignore") topk_hyp_indexes = (topk_indexes // vocab_size).tolist() topk_token_indexes = (topk_indexes % vocab_size).tolist() for k in range(len(topk_hyp_indexes)): hyp_idx = topk_hyp_indexes[k] hyp = A[i][hyp_idx] new_ys = hyp.ys[:] new_token = topk_token_indexes[k] if new_token != blank_id: new_ys.append(new_token) new_log_prob = topk_log_probs[k] new_hyp = Hypothesis(ys=new_ys, log_prob=new_log_prob) B[i].add(new_hyp) streams[i].hyps = B[i] result = sp.decode(streams[i].decoding_result()) logging.info(f"Partial result {i}:\n{result}") def process_features( model: nn.Module, features: torch.Tensor, streams: List[FeatureExtractionStream], params: AttributeDict, sp: spm.SentencePieceProcessor, ) -> None: """Process features for each stream in parallel. Args: model: The RNN-T model. features: A 3-D tensor of shape (N, T, C). streams: A list of streams of size (N,). params: It is the return value of :func:`get_params`. sp: The BPE model. """ assert features.ndim == 3 assert features.size(0) == len(streams) batch_size = features.size(0) device = model.device features = features.to(device) feature_lens = torch.full( (batch_size,), fill_value=features.size(1), device=device, ) # Caution: It has a limitation as it assumes that # if one of the stream has an empty state, then all other # streams also have empty states. if streams[0].states is None: states = None else: state_list = [stream.states for stream in streams] states = stack_states(state_list) (encoder_out, encoder_out_lens, states,) = model.encoder.streaming_forward( features, feature_lens, states, ) state_list = unstack_states(states) for i, s in enumerate(state_list): streams[i].states = s if params.decoding_method == "greedy_search": greedy_search( model=model, streams=streams, encoder_out=encoder_out, sp=sp, ) elif params.decoding_method == "modified_beam_search": modified_beam_search( model=model, streams=streams, encoder_out=encoder_out, sp=sp, beam=params.beam_size, ) else: raise ValueError( f"Unsupported decoding method: {params.decoding_method}" ) def decode_batch( batched_samples: List[torch.Tensor], model: nn.Module, params: AttributeDict, sp: spm.SentencePieceProcessor, ) -> List[str]: """ Args: batched_samples: A list of 1-D tensors containing the audio samples of each utterance. model: The RNN-T model. params: It is the return value of :func:`get_params`. sp: The BPE model. """ # number of frames before subsampling segment_length = model.encoder.segment_length right_context_length = model.encoder.right_context_length # We add 3 here since the subsampling method is using # ((len - 1) // 2 - 1) // 2) chunk_length = (segment_length + 3) + right_context_length batch_size = len(batched_samples) streaming_audio_samples = StreamingAudioSamples(batched_samples) stream_list = StreamList( batch_size=batch_size, context_size=params.context_size, decoding_method=params.decoding_method, ) while not streaming_audio_samples.done: samples = streaming_audio_samples.get_next() stream_list.accept_waveform( audio_samples=samples, sampling_rate=params.sampling_rate, ) features, active_streams = stream_list.build_batch( chunk_length=chunk_length, segment_length=segment_length, ) if features is not None: process_features( model=model, features=features, streams=active_streams, params=params, sp=sp, ) results = [] for stream in stream_list.streams: text = sp.decode(stream.decoding_result()) results.append(text) return results @torch.no_grad() def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) # Note: params.decoding_method is currently not used. params.res_dir = params.exp_dir / "streaming" / params.decoding_method setup_logger(f"{params.res_dir}/log-streaming-decode") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") sp = spm.SentencePieceProcessor() sp.load(params.bpe_model) # and are defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() params.device = device logging.info(params) logging.info("About to create model") model = get_transducer_model(params) if params.avg_last_n > 0: filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n] logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) model.to(device) model.eval() model.device = device num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") librispeech = LibriSpeechAsrDataModule(args) test_clean_cuts = librispeech.test_clean_cuts() batch_size = 3 ground_truth = [] batched_samples = [] for num, cut in enumerate(test_clean_cuts): audio: np.ndarray = cut.load_audio() # audio.shape: (1, num_samples) assert len(audio.shape) == 2 assert audio.shape[0] == 1, "Should be single channel" assert audio.dtype == np.float32, audio.dtype # The trained model is using normalized samples assert audio.max() <= 1, "Should be normalized to [-1, 1])" samples = torch.from_numpy(audio).squeeze(0) batched_samples.append(samples) ground_truth.append(cut.supervisions[0].text) if len(batched_samples) >= batch_size: decoded_results = decode_batch( batched_samples=batched_samples, model=model, params=params, sp=sp, ) s = "\n" for i, (hyp, ref) in enumerate(zip(decoded_results, ground_truth)): s += f"hyp {i}:\n{hyp}\n" s += f"ref {i}:\n{ref}\n\n" logging.info(s) batched_samples = [] ground_truth = [] # break after processing the first batch for test purposes break if __name__ == "__main__": torch.manual_seed(20220410) main()