#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=60 stage=-1 stop_stage=9 # We assume dl_dir (download dir) contains the following # directories and files. download them from https://www.openslr.org/resources/104/ # # - $dl_dir/hi-en dl_dir=$PWD/download mkdir -p $dl_dir raw_data_path="/data/Database/MUCS/" dataset="hi-en" #hin-en or bn-en datadir="data_"$dataset raw_kaldi_files_path=$dl_dir/$dataset/ . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. vocab_size=400 mkdir -p $datadir log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: prepare data files" mkdir -p $dl_dir/$dataset for x in train dev test train_all; do if [ -d "$dl_dir/$dataset/$x" ]; then rm -Rf $dl_dir/$dataset/$x; fi done mkdir -p $dl_dir/$dataset/{train,test,dev} cp -r $raw_data_path/$dataset/"train"/"transcripts"/* $dl_dir/$dataset/"train" cp -r $raw_data_path/$dataset/"test"/"transcripts"/* $dl_dir/$dataset/"test" for x in train test do cp $dl_dir/$dataset/$x/"wav.scp" $dl_dir/$dataset/$x/"wav.scp_old" cat $dl_dir/$dataset/$x/"wav.scp" | cut -d' ' -f1 > $dl_dir/$dataset/$x/wav_ids cat $dl_dir/$dataset/$x/"wav.scp" | cut -d' ' -f2 | awk -v var="$raw_data_path/$dataset/$x/" '{print var$1}' > $dl_dir/$dataset/$x/wav_ids_with_fullpath paste -d' ' $dl_dir/$dataset/$x/wav_ids $dl_dir/$dataset/$x/wav_ids_with_fullpath > $dl_dir/$dataset/$x/"wav.scp" rm $dl_dir/$dataset/$x/wav_ids rm $dl_dir/$dataset/$x/wav_ids_with_fullpath done ./local/subset_data_dir.sh --first $dl_dir/$dataset/"train" 1000 $dl_dir/$dataset/"dev" total=$(wc -l $dl_dir/$dataset/"train"/"text" | cut -d' ' -f1) count=$(expr $total - 1000) ./local/subset_data_dir.sh --first $dl_dir/$dataset/"train" $count $dl_dir/$dataset/"train_reduced" mv $dl_dir/$dataset/"train" $dl_dir/$dataset/"train_all" mv $dl_dir/$dataset/"train_reduced" $dl_dir/$dataset/"train" fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: prepare LM files" mkdir -p $raw_kaldi_files_path/lm if [ ! -e $raw_kaldi_files_path/lm/.done ]; then ./local/prepare_lm_files.py --out-dir=$dl_dir/lm --data-path=$raw_kaldi_files_path --mode="train" touch $raw_kaldi_files_path/lm/.done fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare MUCS manifest" # We assume that you have downloaded the MUCS corpus # to $dl_dir/ mkdir -p $datadir/manifests if [ ! -e $datadir/manifests/.mucs.done ]; then # generate lhotse manifests from kaldi style files ./local/prepare_manifest.py "$raw_kaldi_files_path" $nj $datadir/manifests touch $datadir/manifests/.mucs.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for mucs" mkdir -p $datadir/fbank if [ ! -e $datadir/fbank/.mucs.done ]; then ./local/compute_fbank_mucs.py --manifestpath $datadir/manifests/ --fbankpath $datadir/fbank touch $datadir/fbank/.mucs.done fi # exit if [ ! -e $datadir/fbank/.mucs-validated.done ]; then log "Validating $datadir/fbank for mucs" parts=( train test dev ) for part in ${parts[@]}; do python3 ./local/validate_manifest.py \ $datadir/fbank/mucs_cuts_${part}.jsonl.gz done touch $datadir/fbank/.mucs-validated.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=$datadir/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/mucs_lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/disambig_L.fst fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" lang_dir=$datadir/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp $datadir/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" cp download/lm/mucs_vocab_text.txt $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Train LM from training data" lang_dir=$datadir/lang_bpe_${vocab_size} if [ ! -f $lang_dir/lm_3.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm_3.arpa fi if [ ! -f $lang_dir/lm_4.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 4 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm_4.arpa fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p $datadir/lm if [ ! -f $datadir/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="$datadir/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $datadir/lang_bpe_${vocab_size}/lm_3.arpa > $datadir/lm/G_3_gram.fst.txt fi if [ ! -f $datadir/lm/G_4_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="$datadir/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $datadir/lang_bpe_${vocab_size}/lm_4.arpa > $datadir/lm/G_4_gram.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" lang_dir=$datadir/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir fi