# Results for mucs hi-en and bn-en This page shows the WERs for the code switched test corpus of MUCS hi-en and bn-en. ## using conformer ctc The following results are obtained with run.sh Specify the language through dataset arg (hi-en or bn-en) LM is trained using kenlm, with the training corpus Here are the results with different decoding methods bn-en | | test | |-------------------------|-------| | ctc decoding | 31.72 | | 1best | 28.05 | | nbest | 27.92 | | nbest-rescoring | 27.22 | | whole-lattice-rescoring | 27.24 | | attention-decoder | 26.46 | hi-en | | test | |-------------------------|-------| | ctc decoding | 31.43 | | 1best | 28.48 | | nbest | 28.55 | | nbest-rescoring | 28.23 | | whole-lattice-rescoring | 28.77 | | attention-decoder | 28.16 | The training command for reproducing is given below: ```bash cd egs/mucs/ASR/ ./prepare.sh dataset="hi-en" #hi-en or bn-en bpe=400 datadir=data_"$dataset" ./conformer_ctc/train.py \ --num-epochs 60 \ --max-duration 300 \ --exp-dir ./conformer_ctc/exp_"$dataset"_bpe"$bpe" \ --manifest-dir $datadir/fbank \ --lang-dir $datadir/lang_bpe_"$bpe" \ --enable-musan False \ ``` The decoding command is given below: ```bash dataset="hi-en" #hi-en or bn-en bpe=400 datadir=data_"$dataset" num_paths=10 max_duration=10 decode_methods="attention-decoder 1best nbest nbest-rescoring ctc-decoding whole-lattice-rescoring" for decode_method in $decode_methods; do ./conformer_ctc/decode.py \ --epoch 59 \ --avg 10 \ --manifest-dir $datadir/fbank \ --exp-dir ./conformer_ctc/exp_"$dataset"_bpe"$bpe" \ --max-duration $max_duration \ --lang-dir $datadir/lang_bpe_"$bpe" \ --lm-dir $datadir/"lm" \ --method $decode_method \ --num-paths $num_paths \ done ```