#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=3 stop_stage=3 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/icmcasr # You can find data_icmcasr, resource_icmcasr inside it. # You can download them from https://www.openslr.org/33 # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech # ln -s /your/parent/path/to/ICMC-ASR $PWD/downloa dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bbpe_xxx, # data/lang_bbpe_yyy if the array contains xxx, yyy vocab_sizes=( # 2000 # 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare icmcasr manifest" # We assume that you have downloaded the icmcasr corpus # to $dl_dir/icmcasr if [ ! -f data/manifests/.icmcasr_manifests.done ]; then mkdir -p data/manifests for part in ihm sdm; do lhotse prepare icmcasr --mic ${part} $dl_dir/ICMC-ASR data/manifests done touch data/manifests/.icmcasr_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for icmcasr" if [ ! -f data/fbank/.icmcasr.done ]; then mkdir -p data/fbank ./local/compute_fbank_icmcasr.py --perturb-speed True touch data/fbank/.icmcasr.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi lang_phone_dir=data/lang_phone if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" mkdir -p $lang_phone_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/icmcasr/resource_icmcasr/lexicon.txt | sort | uniq > $lang_phone_dir/lexicon.txt ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir if [ ! -f $lang_phone_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_phone_dir fi fi lang_char_dir=data/lang_char if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare char based lang" mkdir -p $lang_char_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. # The transcripts in training set, generated in stage 5 cp $lang_phone_dir/transcript_words.txt $lang_char_dir/transcript_words.txt cat $dl_dir/icmcasr/data_icmcasr/transcript/icmcasr_transcript_v0.8.txt | cut -d " " -f 2- > $lang_char_dir/text (echo ' 0'; echo '!SIL 1'; echo ' 2'; echo ' 3';) \ > $lang_char_dir/words.txt cat $lang_char_dir/text | sed 's/ /\n/g' | sort -u | sed '/^$/d' \ | awk '{print $1" "NR+3}' >> $lang_char_dir/words.txt num_lines=$(< $lang_char_dir/words.txt wc -l) (echo "#0 $num_lines"; echo " $(($num_lines + 1))"; echo " $(($num_lines + 2))";) \ >> $lang_char_dir/words.txt if [ ! -f $lang_char_dir/L_disambig.pt ]; then ./local/prepare_char.py --lang-dir $lang_char_dir fi if [ ! -f $lang_char_dir/HLG.fst ]; then ./local/prepare_lang_fst.py --lang-dir $lang_phone_dir --ngram-G ./data/lm/G_3_gram.fst.txt fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare Byte BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bbpe_${vocab_size} mkdir -p $lang_dir cp $lang_char_dir/words.txt $lang_dir cp $lang_char_dir/text $lang_dir if [ ! -f $lang_dir/bbpe.model ]; then ./local/train_bbpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/text fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bbpe.py --lang-dir $lang_dir fi done fi