#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=0 stop_stage=100 # Note: This script just prepare the minimal requirements that needed by a # transducer training with bpe units. # # We assume dl_dir (download dir) contains the following # directories and files. # This script downloads only musan dataset automatically. # # - $dl_dir/KsponSpeech # This script doesn't download KsponSpeech dataset automatically. # For more details, please visit: # Dataset: https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123 # Paper: https://www.mdpi.com/2076-3417/10/19/6936 # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( 5000 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. data=$PWD/data . shared/parse_options.sh || exit 1 mkdir -p $data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Running prepare.sh" log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download MUSAN data" # Befor you run this script, you must get the KsponSpeech dataset # from https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=123 # If you have pre-downloaded it to /path/to/KsponSpeech, # you can create a symlink # # ln -svf /path/to/KsponSpeech $dl_dir/KsponSpeech # # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare KsponSpeech manifest" # We assume that you have downloaded the KsponSpeech corpus # to $dl_dir/KsponSpeech mkdir -p $data/manifests if [ ! -e $data/manifests/.ksponspeech.done ]; then lhotse prepare ksponspeech -j $nj $dl_dir/KsponSpeech $data/manifests touch $data/manifests/.ksponspeech.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p $data/manifests if [ ! -e $data/manifests/.musan.done ]; then lhotse prepare musan $dl_dir/musan $data/manifests touch $data/manifests/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for KsponSpeech" mkdir -p $data/fbank if [ ! -e $data/fbank/.ksponspeech.done ]; then ./local/compute_fbank_ksponspeech.py --data-dir $data touch $data/fbank/.ksponspeech.done fi if [ ! -e $data/fbank/.ksponspeech-validated.done ]; then log "Validating data/fbank for KsponSpeech" parts=( train dev eval_clean eval_other ) for part in ${parts[@]}; do ./local/validate_manifest.py \ $data/fbank/ksponspeech_cuts_${part}.jsonl.gz done touch $data/fbank/.ksponspeech-validated.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p $data/fbank if [ ! -e $data/fbank/.musan.done ]; then ./local/compute_fbank_musan.py \ --src-dir $data/manifests \ --output-dir $data/fbank touch $data/fbank/.musan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=$data/lang_bpe_${vocab_size} mkdir -p $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" files=$( find "$data/fbank" -name "ksponspeech_cuts_*.jsonl.gz" ) gunzip -c ${files} | awk -F '"' '{print $30}' > $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi done fi