# Copyright 2021-2022 Xiaomi Corporation (authors: Fangjun Kuang, # Zengwei Yao) # # See ../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import logging import os import re from pathlib import Path from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn from lhotse.dataset.sampling.base import CutSampler from torch import Tensor from torch.cuda.amp import GradScaler from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer # use duck typing for LRScheduler since we have different possibilities, see # our class LRScheduler. LRSchedulerType = object def save_checkpoint( filename: Path, model: Union[nn.Module, DDP], model_avg: Optional[nn.Module] = None, model_ema: Optional[nn.Module] = None, params: Optional[Dict[str, Any]] = None, optimizer: Optional[Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, scaler: Optional[GradScaler] = None, labeled_sampler: Optional[CutSampler] = None, unlabeled_sampler: Optional[CutSampler] = None, rank: int = 0, ) -> None: """Save training information to a file. Args: filename: The checkpoint filename. model: The model to be saved. We only save its `state_dict()`. model_avg: The stored model averaged from the start of training. model_ema: The EMA version of model. params: User defined parameters, e.g., epoch, loss. optimizer: The optimizer to be saved. We only save its `state_dict()`. scheduler: The scheduler to be saved. We only save its `state_dict()`. scalar: The GradScaler to be saved. We only save its `state_dict()`. labeled_sampler: The sampler used in the labeled training dataset. We only save its `state_dict()`. unlabeled_sampler: The sampler used in the unlabeled training dataset. We only save its `state_dict()`. rank: Used in DDP. We save checkpoint only for the node whose rank is 0. Returns: Return None. """ if rank != 0: return logging.info(f"Saving checkpoint to {filename}") if isinstance(model, DDP): model = model.module checkpoint = { "model": model.state_dict(), "optimizer": optimizer.state_dict() if optimizer is not None else None, "scheduler": scheduler.state_dict() if scheduler is not None else None, "grad_scaler": scaler.state_dict() if scaler is not None else None, "labeled_sampler": labeled_sampler.state_dict() if labeled_sampler is not None else None, "unlabeled_sampler": unlabeled_sampler.state_dict() if unlabeled_sampler is not None else None, } if model_avg is not None: checkpoint["model_avg"] = model_avg.to(torch.float32).state_dict() if model_ema is not None: checkpoint["model_ema"] = model_ema.model.to(torch.float32).state_dict() if params: for k, v in params.items(): assert k not in checkpoint checkpoint[k] = v torch.save(checkpoint, filename) def load_checkpoint( filename: Path, model: nn.Module, model_avg: Optional[nn.Module] = None, model_ema: Optional[nn.Module] = None, optimizer: Optional[Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, scaler: Optional[GradScaler] = None, labeled_sampler: Optional[CutSampler] = None, unlabeled_sampler: Optional[CutSampler] = None, strict: bool = False, ) -> Dict[str, Any]: """ TODO: document it """ logging.info(f"Loading checkpoint from {filename}") checkpoint = torch.load(filename, map_location="cpu") if next(iter(checkpoint["model"])).startswith("module."): logging.info("Loading checkpoint saved by DDP") dst_state_dict = model.state_dict() src_state_dict = checkpoint["model"] for key in dst_state_dict.keys(): src_key = "{}.{}".format("module", key) dst_state_dict[key] = src_state_dict.pop(src_key) assert len(src_state_dict) == 0 model.load_state_dict(dst_state_dict, strict=strict) else: model.load_state_dict(checkpoint["model"], strict=strict) checkpoint.pop("model") if model_avg is not None and "model_avg" in checkpoint: logging.info("Loading averaged model") model_avg.load_state_dict(checkpoint["model_avg"], strict=strict) checkpoint.pop("model_avg") if model_ema is not None and "model_ema" in checkpoint: logging.info("Loading ema model") model_ema.model.load_state_dict(checkpoint["model_ema"], strict=strict) checkpoint.pop("model_ema") def load(name, obj): s = checkpoint.get(name, None) if obj and s: obj.load_state_dict(s) checkpoint.pop(name) load("optimizer", optimizer) load("scheduler", scheduler) load("grad_scaler", scaler) load("labeled_sampler", labeled_sampler) load("unlabeled_sampler", unlabeled_sampler) return checkpoint def save_checkpoint_with_global_batch_idx( out_dir: Path, global_batch_idx: int, model: Union[nn.Module, DDP], model_avg: Optional[nn.Module] = None, model_ema: Optional[nn.Module] = None, params: Optional[Dict[str, Any]] = None, optimizer: Optional[Optimizer] = None, scheduler: Optional[LRSchedulerType] = None, scaler: Optional[GradScaler] = None, labeled_sampler: Optional[CutSampler] = None, unlabeled_sampler: Optional[CutSampler] = None, rank: int = 0, ): """Save training info after processing given number of batches. Args: out_dir: The directory to save the checkpoint. global_batch_idx: The number of batches processed so far from the very start of the training. The saved checkpoint will have the following filename: f'out_dir / checkpoint-{global_batch_idx}.pt' model: The neural network model whose `state_dict` will be saved in the checkpoint. model_avg: The stored model averaged from the start of training. model_ema: The EMA version of model. params: A dict of training configurations to be saved. optimizer: The optimizer used in the training. Its `state_dict` will be saved. scheduler: The learning rate scheduler used in the training. Its `state_dict` will be saved. scaler: The scaler used for mix precision training. Its `state_dict` will be saved. labeled_sampler: The sampler used in the labeled training dataset. We only save its `state_dict()`. unlabeled_sampler: The sampler used in the unlabeled training dataset. We only save its `state_dict()`. rank: The rank ID used in DDP training of the current node. Set it to 0 if DDP is not used. """ out_dir = Path(out_dir) out_dir.mkdir(parents=True, exist_ok=True) filename = out_dir / f"checkpoint-{global_batch_idx}.pt" save_checkpoint( filename=filename, model=model, model_avg=model_avg, model_ema=model_ema, params=params, optimizer=optimizer, scheduler=scheduler, scaler=scaler, labeled_sampler=labeled_sampler, unlabeled_sampler=unlabeled_sampler, rank=rank, )