# How to use a pre-trained model to transcribe a sound file or multiple sound files You need to prepare 4 files: - a model checkpoint file, e.g., epoch-20.pt - HLG.pt, the decoding graph - words.txt, the word symbol table - a sound file, whose sampling rate has to be 16 kHz. Supported formats are those supported by `torchaudio.load()`, e.g., wav and flac. Also, you need to install `kaldifeat`. Please refer to for installation. ``` ./conformer_ctc/pretrained.py --help ``` displays the help information. ## HLG decoding Once you have the above files ready and have `kaldifeat` installed, you can run: ``` ./conformer_ctc/pretrained.py \ --checkpoint /path/to/your/checkpoint.pt \ --words-file /path/to/words.txt \ --HLG /path/to/HLG.pt \ /path/to/your/sound.wav ``` and you will see the transcribed result. If you want to transcribe multiple files at the same time, you can use: ``` ./conformer_ctc/pretrained.py \ --checkpoint /path/to/your/checkpoint.pt \ --words-file /path/to/words.txt \ --HLG /path/to/HLG.pt \ /path/to/your/sound1.wav \ /path/to/your/sound2.wav \ /path/to/your/sound3.wav ``` **Note**: This is the fastest decoding method. ## HLG decoding + LM rescoring `./conformer_ctc/pretrained.py` also supports `whole lattice LM rescoring` and `attention decoder rescoring`. To use whole lattice LM rescoring, you also need the following files: - G.pt, e.g., `data/lm/G_4_gram.pt` if you have run `./prepare.sh` The command to run decoding with LM rescoring is: ``` ./conformer_ctc/pretrained.py \ --checkpoint /path/to/your/checkpoint.pt \ --words-file /path/to/words.txt \ --HLG /path/to/HLG.pt \ --method whole-lattice-rescoring \ --G data/lm/G_4_gram.pt \ --ngram-lm-scale 0.8 \ /path/to/your/sound1.wav \ /path/to/your/sound2.wav \ /path/to/your/sound3.wav ``` ## HLG Decoding + LM rescoring + attention decoder rescoring To use attention decoder for rescoring, you need the following extra information: - sos token ID - eos token ID The command to run decoding with attention decoder rescoring is: ``` ./conformer_ctc/pretrained.py \ --checkpoint /path/to/your/checkpoint.pt \ --words-file /path/to/words.txt \ --HLG /path/to/HLG.pt \ --method attention-decoder \ --G data/lm/G_4_gram.pt \ --ngram-lm-scale 1.3 \ --attention-decoder-scale 1.2 \ --lattice-score-scale 0.5 \ --num-paths 100 \ --sos-id 1 \ --eos-id 1 \ /path/to/your/sound1.wav \ /path/to/your/sound2.wav \ /path/to/your/sound3.wav ```