# Copyright 2021 Piotr Żelasko # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging from functools import lru_cache from pathlib import Path from typing import Any, Dict, Optional import torch from lhotse import CutSet, Fbank, FbankConfig, load_manifest, load_manifest_lazy from lhotse.dataset import ( CutConcatenate, CutMix, DynamicBucketingSampler, K2SpeechRecognitionDataset, PrecomputedFeatures, SpecAugment, ) from lhotse.dataset.input_strategies import OnTheFlyFeatures from lhotse.utils import fix_random_seed from torch.utils.data import DataLoader from tqdm import tqdm from icefall.utils import str2bool class _SeedWorkers: def __init__(self, seed: int): self.seed = seed def __call__(self, worker_id: int): fix_random_seed(self.seed + worker_id) class SPGISpeechAsrDataModule: """ DataModule for k2 ASR experiments. It assumes there is always one train and valid dataloader, but there can be multiple test dataloaders (e.g. LibriSpeech test-clean and test-other). It contains all the common data pipeline modules used in ASR experiments, e.g.: - dynamic batch size, - bucketing samplers, - cut concatenation, - augmentation, - on-the-fly feature extraction This class should be derived for specific corpora used in ASR tasks. """ def __init__(self, args: argparse.Namespace): self.args = args @classmethod def add_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group( title="ASR data related options", description="These options are used for the preparation of " "PyTorch DataLoaders from Lhotse CutSet's -- they control the " "effective batch sizes, sampling strategies, applied data " "augmentations, etc.", ) group.add_argument( "--manifest-dir", type=Path, default=Path("data/manifests"), help="Path to directory with train/valid/test cuts.", ) group.add_argument( "--enable-musan", type=str2bool, default=True, help="When enabled, select noise from MUSAN and mix it " "with training dataset. ", ) group.add_argument( "--concatenate-cuts", type=str2bool, default=False, help="When enabled, utterances (cuts) will be concatenated " "to minimize the amount of padding.", ) group.add_argument( "--duration-factor", type=float, default=1.0, help="Determines the maximum duration of a concatenated cut " "relative to the duration of the longest cut in a batch.", ) group.add_argument( "--gap", type=float, default=1.0, help="The amount of padding (in seconds) inserted between " "concatenated cuts. This padding is filled with noise when " "noise augmentation is used.", ) group.add_argument( "--max-duration", type=int, default=100.0, help="Maximum pooled recordings duration (seconds) in a " "single batch. You can reduce it if it causes CUDA OOM.", ) group.add_argument( "--num-buckets", type=int, default=30, help="The number of buckets for the BucketingSampler" "(you might want to increase it for larger datasets).", ) group.add_argument( "--on-the-fly-feats", type=str2bool, default=False, help="When enabled, use on-the-fly cut mixing and feature " "extraction. Will drop existing precomputed feature manifests " "if available.", ) group.add_argument( "--shuffle", type=str2bool, default=True, help="When enabled (=default), the examples will be " "shuffled for each epoch.", ) group.add_argument( "--num-workers", type=int, default=8, help="The number of training dataloader workers that " "collect the batches.", ) group.add_argument( "--enable-spec-aug", type=str2bool, default=True, help="When enabled, use SpecAugment for training dataset.", ) group.add_argument( "--spec-aug-time-warp-factor", type=int, default=80, help="Used only when --enable-spec-aug is True. " "It specifies the factor for time warping in SpecAugment. " "Larger values mean more warping. " "A value less than 1 means to disable time warp.", ) def train_dataloaders( self, cuts_train: CutSet, sampler_state_dict: Optional[Dict[str, Any]] = None, ) -> DataLoader: """ Args: cuts_train: CutSet for training. sampler_state_dict: The state dict for the training sampler. """ logging.info("About to get Musan cuts") cuts_musan = load_manifest( self.args.manifest_dir / "cuts_musan.jsonl.gz" ) transforms = [] if self.args.enable_musan: logging.info("Enable MUSAN") transforms.append( CutMix( cuts=cuts_musan, prob=0.5, snr=(10, 20), preserve_id=True ) ) else: logging.info("Disable MUSAN") if self.args.concatenate_cuts: logging.info( f"Using cut concatenation with duration factor " f"{self.args.duration_factor} and gap {self.args.gap}." ) # Cut concatenation should be the first transform in the list, # so that if we e.g. mix noise in, it will fill the gaps between # different utterances. transforms = [ CutConcatenate( duration_factor=self.args.duration_factor, gap=self.args.gap ) ] + transforms input_transforms = [] if self.args.enable_spec_aug: logging.info("Enable SpecAugment") logging.info( f"Time warp factor: {self.args.spec_aug_time_warp_factor}" ) input_transforms.append( SpecAugment( time_warp_factor=self.args.spec_aug_time_warp_factor, num_frame_masks=2, features_mask_size=27, num_feature_masks=2, frames_mask_size=100, ) ) else: logging.info("Disable SpecAugment") logging.info("About to create train dataset") if self.args.on_the_fly_feats: train = K2SpeechRecognitionDataset( cut_transforms=transforms, input_strategy=OnTheFlyFeatures( Fbank(FbankConfig(num_mel_bins=80)) ), input_transforms=input_transforms, ) else: train = K2SpeechRecognitionDataset( cut_transforms=transforms, input_transforms=input_transforms, ) logging.info("Using DynamicBucketingSampler.") train_sampler = DynamicBucketingSampler( cuts_train, max_duration=self.args.max_duration, shuffle=False, num_buckets=self.args.num_buckets, drop_last=True, ) logging.info("About to create train dataloader") if sampler_state_dict is not None: logging.info("Loading sampler state dict") train_sampler.load_state_dict(sampler_state_dict) # 'seed' is derived from the current random state, which will have # previously been set in the main process. seed = torch.randint(0, 100000, ()).item() worker_init_fn = _SeedWorkers(seed) train_dl = DataLoader( train, sampler=train_sampler, batch_size=None, num_workers=self.args.num_workers, persistent_workers=False, worker_init_fn=worker_init_fn, ) return train_dl def valid_dataloaders(self, cuts_valid: CutSet) -> DataLoader: transforms = [] if self.args.concatenate_cuts: transforms = [ CutConcatenate( duration_factor=self.args.duration_factor, gap=self.args.gap ) ] + transforms logging.info("About to create dev dataset") if self.args.on_the_fly_feats: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, input_strategy=OnTheFlyFeatures( Fbank(FbankConfig(num_mel_bins=80)) ), ) else: validate = K2SpeechRecognitionDataset( cut_transforms=transforms, ) valid_sampler = DynamicBucketingSampler( cuts_valid, max_duration=self.args.max_duration, shuffle=False, ) logging.info("About to create dev dataloader") valid_dl = DataLoader( validate, sampler=valid_sampler, batch_size=None, num_workers=2, persistent_workers=False, ) return valid_dl def test_dataloaders(self, cuts: CutSet) -> DataLoader: logging.debug("About to create test dataset") test = K2SpeechRecognitionDataset( input_strategy=OnTheFlyFeatures(Fbank(FbankConfig(num_mel_bins=80))) if self.args.on_the_fly_feats else PrecomputedFeatures(), ) sampler = DynamicBucketingSampler( cuts, max_duration=self.args.max_duration, shuffle=False ) logging.debug("About to create test dataloader") test_dl = DataLoader( test, batch_size=None, sampler=sampler, num_workers=self.args.num_workers, ) return test_dl @lru_cache() def train_cuts(self) -> CutSet: logging.info("About to get SPGISpeech train cuts") return load_manifest_lazy( self.args.manifest_dir / "cuts_train_shuf.jsonl.gz" ) @lru_cache() def dev_cuts(self) -> CutSet: logging.info("About to get SPGISpeech dev cuts") return load_manifest_lazy(self.args.manifest_dir / "cuts_dev.jsonl.gz") @lru_cache() def val_cuts(self) -> CutSet: logging.info("About to get SPGISpeech val cuts") return load_manifest_lazy(self.args.manifest_dir / "cuts_val.jsonl.gz") def test(): parser = argparse.ArgumentParser() SPGISpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() adm = SPGISpeechAsrDataModule(args) cuts = adm.train_cuts() dl = adm.train_dataloaders(cuts) for i, batch in tqdm(enumerate(dl)): if i == 100: break cuts = adm.dev_cuts() dl = adm.valid_dataloaders(cuts) for i, batch in tqdm(enumerate(dl)): if i == 100: break if __name__ == "__main__": test()