#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # 2023 Brno University of Technology (authors: Karel Veselý) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file computes fbank features of VoxPopuli dataset. Usage example: python3 ./local/compute_fbank.py \ --src-dir data/fbank --output-dir data/fbank \ --num-jobs 100 --num-workers 25 \ --prefix "voxpopuli-${task}-${lang}" \ --dataset train \ --trim-to-supervisions True \ --speed-perturb True It looks for raw CutSet in the directory data/fbank located at: `{src_dir}/{prefix}_cuts_{dataset}_raw.jsonl.gz`. The generated fbank features are saved in `data/fbank/{prefix}-{dataset}_feats` and CutSet manifest stored in `data/fbank/{prefix}_cuts_{dataset}.jsonl.gz`. Typically, the number of workers is smaller than number of jobs (see --num-jobs 100 --num-workers 25 in the example). And, the number of jobs should be at least the number of workers (it's checked). """ import argparse import logging import multiprocessing import os from concurrent.futures import ProcessPoolExecutor from pathlib import Path import sentencepiece as spm import torch from filter_cuts import filter_cuts from lhotse import ( CutSet, Fbank, FbankConfig, LilcomChunkyWriter, is_caching_enabled, set_caching_enabled, ) from icefall.utils import str2bool # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--bpe-model", type=str, help="""Path to the bpe.model. If not None, we will remove short and long utterances before extracting features""", ) parser.add_argument( "--src-dir", type=str, help="""Folder with the input manifest files.""", default="data/manifests", ) parser.add_argument( "--output-dir", type=str, help="""Folder with the output manifests (cuts) and feature files.""", default="data/fbank", ) parser.add_argument( "--prefix", type=str, help="""Prefix of the manifest files.""", default="", ) parser.add_argument( "--dataset", type=str, help="""Dataset parts to compute fbank (train,test,dev).""", default=None, ) parser.add_argument( "--num-jobs", type=int, help="""Number of jobs (i.e. files with extracted features)""", default=50, ) parser.add_argument( "--num-workers", type=int, help="""Number of parallel workers""", default=10, ) parser.add_argument( "--speed-perturb", type=str2bool, default=False, help="""Enable speed perturbation for the set.""", ) parser.add_argument( "--trim-to-supervisions", type=str2bool, default=False, help="""Apply `trim-to-supervision` to cut set.""", ) return parser.parse_args() def compute_fbank_features(args: argparse.Namespace): set_caching_enabled(True) # lhotse src_dir = Path(args.src_dir) output_dir = Path(args.output_dir) num_jobs = args.num_jobs num_workers = min(args.num_workers, os.cpu_count()) num_mel_bins = 80 bpe_model = args.bpe_model if bpe_model: logging.info(f"Loading {bpe_model}") sp = spm.SentencePieceProcessor() sp.load(bpe_model) prefix = args.prefix # "ELEF_TRAIN" dataset = args.dataset suffix = "jsonl.gz" cuts_raw_filename = Path(f"{src_dir}/{prefix}_cuts_{dataset}_raw.{suffix}") cuts_raw = CutSet.from_file(cuts_raw_filename) extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) cuts_filename = Path(f"{prefix}_cuts_{dataset}.{suffix}") if (output_dir / cuts_filename).is_file(): logging.info(f"{output_dir/cuts_filename} already exists - skipping.") return logging.info(f"Processing {output_dir/cuts_filename}") cut_set = cuts_raw if bpe_model: cut_set = filter_cuts(cut_set, sp) if args.speed_perturb: cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) if args.trim_to_supervisions: logging.info(f"About to `trim_to_supervisions()` {output_dir / cuts_filename}") cut_set = cut_set.trim_to_supervisions(keep_overlapping=False) else: logging.info( "Not doing `trim_to_supervisions()`, " "to enable use --trim-to-supervision=True" ) cut_set = cut_set.to_eager() # disallow lazy evaluation (sorting requires it) cut_set = cut_set.sort_by_recording_id() # enhances AudioCache hit rate # We typically use `num_jobs=100, num_workers=20` # - this is helpful for large databases # - both values are configurable externally assert num_jobs >= num_workers, (num_jobs, num_workers) executor = ProcessPoolExecutor( max_workers=num_workers, mp_context=multiprocessing.get_context("spawn"), initializer=set_caching_enabled, initargs=(is_caching_enabled(),), ) logging.info( f"executor {executor} : num_workers {num_workers}, num_jobs {num_jobs}" ) cut_set = cut_set.compute_and_store_features( extractor=extractor, storage_path=f"{output_dir / prefix}-{dataset}_feats", num_jobs=num_jobs, executor=executor, storage_type=LilcomChunkyWriter, ) # correct small deviations of duration, caused by speed-perturbation for cut in cut_set: assert len(cut.supervisions) == 1, (len(cut.supervisions), cut.id) duration_difference = abs(cut.supervisions[0].duration - cut.duration) tolerance = 0.02 # 20ms if duration_difference == 0.0: pass elif duration_difference <= tolerance: logging.info( "small mismatch of the supervision duration " f"(Δt = {duration_difference*1000}ms), " f"correcting : cut.duration {cut.duration} -> " f"supervision {cut.supervisions[0].duration}" ) cut.supervisions[0].duration = cut.duration else: logging.error( "mismatch of cut/supervision duration " f"(Δt = {duration_difference*1000}ms) : " f"cut.duration {cut.duration}, " f"supervision {cut.supervisions[0].duration}" ) raise ValueError( "mismatch of cut/supervision duration " f"(Δt = {duration_difference*1000}ms)" ) # store the cutset logging.info(f"storing CutSet to : `{output_dir / cuts_filename}`") cut_set.to_file(output_dir / cuts_filename) if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) args = get_args() logging.info(vars(args)) compute_fbank_features(args)