#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os from pathlib import Path import torch from lhotse import CutSet, Fbank, FbankConfig, LilcomChunkyWriter, combine from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor ARGPARSE_DESCRIPTION = """ This file computes fbank features of the musan dataset. It looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ # Torch's multithreaded behavior needs to be disabled or # it wastes a lot of CPU and slow things down. # Do this outside of main() in case it needs to take effect # even when we are not invoking the main (e.g. when spawning subprocesses). torch.set_num_threads(1) torch.set_num_interop_threads(1) def compute_fbank_musan(manifest_dir: Path, fbank_dir: Path): # src_dir = Path("data/manifests") # output_dir = Path("data/fbank") num_jobs = min(15, os.cpu_count()) num_mel_bins = 80 dataset_parts = ( "music", "speech", "noise", ) prefix = "musan" suffix = "jsonl.gz" manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=manifest_dir, prefix=prefix, suffix=suffix, ) assert manifests is not None assert len(manifests) == len(dataset_parts), ( len(manifests), len(dataset_parts), list(manifests.keys()), dataset_parts, ) musan_cuts_path = fbank_dir / "musan_cuts.jsonl.gz" if musan_cuts_path.is_file(): logging.info(f"{musan_cuts_path} already exists - skipping") return logging.info("Extracting features for Musan") extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. # create chunks of Musan with duration 5 - 10 seconds musan_cuts = ( CutSet.from_manifests( recordings=combine(part["recordings"] for part in manifests.values()) ) .cut_into_windows(10.0) .filter(lambda c: c.duration > 5) .compute_and_store_features( extractor=extractor, storage_path=f"{fbank_dir}/musan_feats", num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomChunkyWriter, ) ) musan_cuts.to_file(musan_cuts_path) def get_args(): parser = argparse.ArgumentParser( description=ARGPARSE_DESCRIPTION, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("--manifest-dir", type=Path, help="Path to save manifests") parser.add_argument("--fbank-dir", type=Path, help="Path to save fbank features") return parser.parse_args() if __name__ == "__main__": args = get_args() formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_musan(args.manifest_dir, args.fbank_dir)