# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import logging import os import re from pathlib import Path from typing import Any, Dict, List, Optional, Union import torch import torch.nn as nn from lhotse.dataset.sampling.base import CutSampler from torch.cuda.amp import GradScaler from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler def save_checkpoint( filename: Path, model: Union[nn.Module, DDP], params: Optional[Dict[str, Any]] = None, optimizer: Optional[Optimizer] = None, scheduler: Optional[_LRScheduler] = None, scaler: Optional[GradScaler] = None, sampler: Optional[CutSampler] = None, rank: int = 0, ) -> None: """Save training information to a file. Args: filename: The checkpoint filename. model: The model to be saved. We only save its `state_dict()`. params: User defined parameters, e.g., epoch, loss. optimizer: The optimizer to be saved. We only save its `state_dict()`. scheduler: The scheduler to be saved. We only save its `state_dict()`. scalar: The GradScaler to be saved. We only save its `state_dict()`. rank: Used in DDP. We save checkpoint only for the node whose rank is 0. Returns: Return None. """ if rank != 0: return logging.info(f"Saving checkpoint to {filename}") if isinstance(model, DDP): model = model.module checkpoint = { "model": model.state_dict(), "optimizer": optimizer.state_dict() if optimizer is not None else None, "scheduler": scheduler.state_dict() if scheduler is not None else None, "grad_scaler": scaler.state_dict() if scaler is not None else None, "sampler": sampler.state_dict() if sampler is not None else None, } if params: for k, v in params.items(): assert k not in checkpoint checkpoint[k] = v torch.save(checkpoint, filename) def load_checkpoint( filename: Path, model: nn.Module, optimizer: Optional[Optimizer] = None, scheduler: Optional[_LRScheduler] = None, scaler: Optional[GradScaler] = None, sampler: Optional[CutSampler] = None, strict: bool = False, ) -> Dict[str, Any]: """ TODO: document it """ logging.info(f"Loading checkpoint from {filename}") checkpoint = torch.load(filename, map_location="cpu") if next(iter(checkpoint["model"])).startswith("module."): logging.info("Loading checkpoint saved by DDP") dst_state_dict = model.state_dict() src_state_dict = checkpoint["model"] for key in dst_state_dict.keys(): src_key = "{}.{}".format("module", key) dst_state_dict[key] = src_state_dict.pop(src_key) assert len(src_state_dict) == 0 model.load_state_dict(dst_state_dict, strict=strict) else: model.load_state_dict(checkpoint["model"], strict=strict) checkpoint.pop("model") def load(name, obj): s = checkpoint.get(name, None) if obj and s: obj.load_state_dict(s) checkpoint.pop(name) load("optimizer", optimizer) load("scheduler", scheduler) load("grad_scaler", scaler) load("sampler", sampler) return checkpoint def average_checkpoints( filenames: List[Path], device: torch.device = torch.device("cpu") ) -> dict: """Average a list of checkpoints. Args: filenames: Filenames of the checkpoints to be averaged. We assume all checkpoints are saved by :func:`save_checkpoint`. device: Move checkpoints to this device before averaging. Returns: Return a dict (i.e., state_dict) which is the average of all model state dicts contained in the checkpoints. """ n = len(filenames) avg = torch.load(filenames[0], map_location=device)["model"] for i in range(1, n): state_dict = torch.load(filenames[i], map_location=device)["model"] for k in avg: avg[k] += state_dict[k] for k in avg: if avg[k].is_floating_point(): avg[k] /= n else: avg[k] //= n return avg def save_checkpoint_with_global_batch_idx( out_dir: Path, global_batch_idx: int, model: Union[nn.Module, DDP], params: Optional[Dict[str, Any]] = None, optimizer: Optional[Optimizer] = None, scheduler: Optional[_LRScheduler] = None, scaler: Optional[GradScaler] = None, sampler: Optional[CutSampler] = None, rank: int = 0, ): """Save training info after processing given number of batches. Args: out_dir: The directory to save the checkpoint. global_batch_idx: The number of batches processed so far from the very start of the training. The saved checkpoint will have the following filename: f'out_dir / checkpoint-{global_batch_idx}.pt' model: The neural network model whose `state_dict` will be saved in the checkpoint. params: A dict of training configurations to be saved. optimizer: The optimizer used in the training. Its `state_dict` will be saved. scheduler: The learning rate scheduler used in the training. Its `state_dict` will be saved. scaler: The scaler used for mix precision training. Its `state_dict` will be saved. sampler: The sampler used in the training dataset. rank: The rank ID used in DDP training of the current node. Set it to 0 if DDP is not used. """ out_dir = Path(out_dir) out_dir.mkdir(parents=True, exist_ok=True) filename = out_dir / f"checkpoint-{global_batch_idx}.pt" save_checkpoint( filename=filename, model=model, params=params, optimizer=optimizer, scheduler=scheduler, scaler=scaler, sampler=sampler, rank=rank, ) def find_checkpoints(out_dir: Path) -> List[str]: """Find all available checkpoints in a directory. The checkpoint filenames have the form: `checkpoint-xxx.pt` where xxx is a numerical value. Args: out_dir: The directory where to search for checkpoints. Returns: Return a list of checkpoint filenames, sorted in descending order by the numerical value in the filename. """ checkpoints = list(glob.glob(f"{out_dir}/checkpoint-[0-9]*.pt")) pattern = re.compile(r"checkpoint-([0-9]+).pt") idx_checkpoints = [ (int(pattern.search(c).group(1)), c) for c in checkpoints ] idx_checkpoints = sorted(idx_checkpoints, reverse=True, key=lambda x: x[0]) ans = [ic[1] for ic in idx_checkpoints] return ans def remove_checkpoints( out_dir: Path, topk: int, rank: int = 0, ): """Remove checkpoints from the given directory. We assume that checkpoint filename has the form `checkpoint-xxx.pt` where xxx is a number, representing the number of processed batches when saving that checkpoint. We sort checkpoints by filename and keep only the `topk` checkpoints with the highest `xxx`. Args: out_dir: The directory containing checkpoints to be removed. topk: Number of checkpoints to keep. rank: If using DDP for training, it is the rank of the current node. Use 0 if no DDP is used for training. """ assert topk >= 1, topk if rank != 0: return checkpoints = find_checkpoints(out_dir) if len(checkpoints) == 0: logging.warn(f"No checkpoints found in {out_dir}") return if len(checkpoints) <= topk: return to_remove = checkpoints[topk:] for c in to_remove: os.remove(c)