# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey) # # See ../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from typing import List, Optional, Tuple import torch from torch import Tensor from torch.optim import Optimizer class Eve(Optimizer): r""" Implements Eve algorithm. This is a modified version of AdamW with a special way of setting the weight-decay / shrinkage-factor, which is designed to make the rms of the parameters approach a particular target_rms (default: 0.1). This is for use with networks with 'scaled' versions of modules (see scaling.py), which will be close to invariant to the absolute scale on the parameter matrix. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. Eve is unpublished so far. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 3e-4; this value means that the weight would decay significantly after about 3k minibatches. Is not multiplied by learning rate, but is conditional on RMS-value of parameter being > target_rms. target_rms (float, optional): target root-mean-square value of parameters, if they fall below this we will stop applying weight decay. .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.98), eps=1e-8, weight_decay=1e-3, target_rms=0.1): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0 <= weight_decay <= 0.1: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0 < target_rms <= 10.0: raise ValueError("Invalid target_rms value: {}".format(target_rms)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, target_rms=target_rms) super(Eve, self).__init__(params, defaults) def __setstate__(self, state): super(Eve, self).__setstate__(state) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue # Perform optimization step grad = p.grad if grad.is_sparse: raise RuntimeError('AdamW does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = (exp_avg_sq.sqrt() * (bias_correction2 ** -0.5)).add_(group['eps']) step_size = group['lr'] / bias_correction1 target_rms = group['target_rms'] weight_decay = group['weight_decay'] delta = exp_avg / denom if p.numel() > 1: # avoid applying this weight-decay on "scaling factors" # (which are scalar). is_above_target_rms = (p.norm() > (target_rms * (p.numel() ** 0.5))) p.mul_(1 - (weight_decay * is_above_target_rms)) p.addcdiv_(exp_avg, denom, value=-step_size) return loss