## Results ### TedLium3 BPE training results (Transducer) #### Conformer encoder + embedding decoder Using the codes from this PR https://github.com/k2-fsa/icefall/pull/233 And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604 Conformer encoder + non-current decoder. The decoder contains only an embedding layer and a Conv1d (with kernel size 2). The WERs are | | dev | test | comment | |------------------------------------|------------|------------|------------------------------------------| | greedy search | 7.19 | 6.57 | --epoch 29, --avg 16, --max-duration 100 | | beam search (beam size 4) | 7.12 | 6.37 | --epoch 29, --avg 16, --max-duration 100 | | modified beam search (beam size 4) | 7.00 | 6.19 | --epoch 29, --avg 16, --max-duration 100 | The training command for reproducing is given below: ``` export CUDA_VISIBLE_DEVICES="0,1,2,3" ./transducer_stateless/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir transducer_stateless/exp \ --max-duration 200 ``` The tensorboard training log can be found at https://tensorboard.dev/experiment/zrfXeJO3Q5GmJpP2KRd2VA/#scalars The decoding command is: ``` epoch=29 avg=16 ## greedy search ./transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless/exp \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 ## beam search ./transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless/exp \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --decoding-method beam_search \ --beam-size 4 ## modified beam search ./transducer_stateless/decode.py \ --epoch $epoch \ --avg $avg \ --exp-dir transducer_stateless/exp \ --bpe-model ./data/lang_bpe_500/bpe.model \ --max-duration 100 \ --decoding-method modified_beam_search \ --beam-size 4 ``` A pre-trained model and decoding logs can be found at