## Introduction Please visit for how to run this recipe. ## How to compute framewise alignment information ### Step 1: Train a model Please use `conformer_ctc/train.py` to train a model. See for how to do it. ### Step 2: Compute framewise alignment Run ``` # Choose a checkpoint and determine the number of checkpoints to average epoch=30 avg=15 ./conformer_ctc/ali.py \ --epoch $epoch \ --avg $avg \ --max-duration 500 \ --bucketing-sampler 0 \ --full-libri 1 \ --exp-dir conformer_ctc/exp \ --lang-dir data/lang_bpe_5000 \ --ali-dir data/ali_5000 ``` and you will get four files inside the folder `data/ali_5000`: ``` $ ls -lh data/ali_500 total 546M -rw-r--r-- 1 kuangfangjun root 1.1M Sep 28 08:06 test_clean.pt -rw-r--r-- 1 kuangfangjun root 1.1M Sep 28 08:07 test_other.pt -rw-r--r-- 1 kuangfangjun root 542M Sep 28 11:36 train-960.pt -rw-r--r-- 1 kuangfangjun root 2.1M Sep 28 11:38 valid.pt ``` **Note**: It can take more than 3 hours to compute the alignment for the training dataset, which contains 960 * 3 = 2880 hours of data. **Caution**: The model parameters in `conformer_ctc/ali.py` have to match those in `conformer_ctc/train.py`. **Caution**: You have to set the parameter `preserve_id` to `True` for `CutMix`. Search `./conformer_ctc/asr_datamodule.py` for `preserve_id`. **TODO:** Add doc about how to use the extracted alignment in the other pull-request.