#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=16 # run step 1 to step 5 by default stage=1 stop_stage=5 # We assume dl_dir (download dir) contains the following directories and files. # # - $dl_dir/GigaSpeech2 dl_dir=$PWD/download lang=Thai num_per_split=20000 . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "Running prepare.sh" log "dl_dir: $dl_dir" subsets="" for dir in ${dl_dir}/GigaSpeech2/* ; do subset=$(basename $dir) subsets="$subsets $subset" done log "Find subsets: $subsets" if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare GigaSpeech2 manifest, language: $lang" # We assume that you have downloaded the GigaSpeech2 corpus # to $dl_dir/GigaSpeech2 mkdir -p data/manifests if [ ! -e data/manifests/.gigaspeech2.done ]; then lhotse prepare gigaspeech2 --lang $lang -j $nj $dl_dir/GigaSpeech2 data/manifests touch data/manifests/.gigaspeech2.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "State 2: Preprocess GigaSpeech2 manifest" if [ ! -f data/fbank/.preprocess.done ]; then python3 ./local/preprocess_gigaspeech2.py --lang $lang --dataset "$subsets" touch data/fbank/.preprocess.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for test set" mkdir -p data/fbank ./local/compute_fbank_gigaspeech2.py fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Split train set into pieces" for subset in $subsets; do if [[ $subset != "test" ]]; then log "Split subset: $subset" split_dir=data/fbank/${subset}_split if [ ! -f $split_dir/.split.done ]; then lhotse split-lazy ./data/fbank/gigaspeech2_cuts_${subset}_raw.jsonl.gz $split_dir $num_per_split touch $split_dir/.split.done fi fi done fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Compute features for train set" for subset in $subsets; do if [[ $subset != "test" ]]; then log "Compute features for subset: $subset" split_dir=data/fbank/${subset}_split num_splits=$(find $split_dir -name "gigaspeech2_cuts_${subset}_raw.*.jsonl.gz" | wc -l) python3 ./local/compute_fbank_gigaspeech2_splits.py \ --dataset $subset \ --num-workers 20 \ --batch-duration 1000 \ --num-splits $num_splits fi done fi