## Results ### GigaSpeech BPE training results (Conformer-CTC) #### 2022-04-06 The best WER, as of 2022-04-06, for the gigaspeech is below (using HLG decoding + n-gram LM rescoring + attention decoder rescoring): | | Dev | Test | |-----|-------|-------| | WER | 11.93 | 11.86 | Scale values used in n-gram LM rescoring and attention rescoring for the best WERs are: | ngram_lm_scale | attention_scale | |----------------|-----------------| | 0.3 | 1.5 | To reproduce the above result, use the following commands for training: ``` cd egs/gigaspeech/ASR/conformer_ctc ./prepare.sh export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" ./conformer_ctc/train.py \ --max-duration 120 \ --num-workers 1 \ --world-size 8 \ --exp-dir conformer_ctc/exp_500 \ --lang-dir data/lang_bpe_500 ``` and the following command for decoding ``` ./conformer_ctc/decode.py \ --epoch 19 \ --avg 8 \ --method attention-decoder \ --num-paths 1000 \ --exp-dir conformer_ctc/exp_500 \ --lang-dir data/lang_bpe_500 \ --max-duration 20 \ --num-workers 1 ``` The tensorboard log for training is available at