#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=60 stage=-1 stop_stage=9 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/LibriSpeech # You can find BOOKS.TXT, test-clean, train-clean-360, etc, inside it. # You can download them from https://www.openslr.org/12 # # - $dl_dir/lm # This directory contains the following files downloaded from # http://www.openslr.org/resources/11 # # - 3-gram.pruned.1e-7.arpa.gz # - 3-gram.pruned.1e-7.arpa # - 4-gram.arpa.gz # - 4-gram.arpa # - librispeech-vocab.txt # - librispeech-lexicon.txt # - librispeech-lm-norm.txt.gz # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download espnet_path=/home/wtc7/espnet/egs2/MUCS/asr1/data/hi-en/ . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 # 1000 200 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "Stage -1: prepare LM files" mkdir -p $dl_dir/lm if [ ! -e $dl_dir/lm/.done ]; then ./local/prepare_lm_files.py --out-dir=$dl_dir/lm --data-path=$espnet_path --mode="train" # touch $dl_dir/lm/.done fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare MUCS manifest" # We assume that you have downloaded the LibriSpeech corpus # to $dl_dir/LibriSpeech mkdir -p data/manifests if [ ! -e data/manifests/.mucs.done ]; then # lhotse prepare mucs -j $nj $dl_dir/hi-en data/manifests ./local/prepare_manifest.py "$espnet_path" $nj data/manifests touch data/manifests/.mucs.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for mucs" mkdir -p data/fbank if [ ! -e data/fbank/.mucs.done ]; then ./local/compute_fbank_mucs.py # touch data/fbank/.mucs.done fi # exit if [ ! -e data/fbank/.mucs-validated.done ]; then log "Validating data/fbank for mucs" parts=( train test dev ) for part in ${parts[@]}; do python3 ./local/validate_manifest.py \ data/fbank/mucs_cuts_${part}.jsonl.gz done # touch data/fbank/.mucs-validated.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/lm/mucs_lexicon.txt | sort | uniq > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/disambig_L.fst fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" cp download/lm/mucs_vocab_text.txt $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare bigram token-level P for MMI training" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} # if [ ! -f $lang_dir/transcript_tokens.txt ]; then # ./local/convert_transcript_words_to_tokens.py \ # --lexicon $lang_dir/lexicon.txt \ # --transcript $lang_dir/transcript_words.txt \ # --oov "" \ # > $lang_dir/transcript_tokens.txt # fi if [ ! -f $lang_dir/lm_3.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm_3.arpa fi if [ ! -f $lang_dir/lm_4.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 4 \ -text $lang_dir/transcript_words.txt \ -lm $lang_dir/lm_4.arpa fi # if [ ! -f $lang_dir/P.fst.txt ]; then # python3 -m kaldilm \ # --read-symbol-table="$lang_dir/tokens.txt" \ # --disambig-symbol='#0' \ # --max-order=2 \ # $lang_dir/P.arpa > $lang_dir/P.fst.txt # fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lang_bpe_200/lm_3.arpa > data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lang_bpe_200/lm_4.arpa > data/lm/G_4_gram.fst.txt fi # if [ ! -f data/lm/G_4_gram.fst.txt ]; then # # It is used for LM rescoring # python3 -m kaldilm \ # --read-symbol-table="data/lang_phone/words.txt" \ # --disambig-symbol='#0' \ # --max-order=4 \ # $dl_dir/lm/4-gram.arpa > data/lm/G_4_gram.fst.txt # fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" # ./local/compile_hlg.py --lang-dir data/lang_phone # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir done fi # Compile LG for RNN-T fast_beam_search decoding if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compile LG" ./local/compile_lg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_lg.py --lang-dir $lang_dir done fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Generate LM training data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" lang_dir=data/lang_bpe_${vocab_size} out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $dl_dir/lm/librispeech-lm-norm.txt \ --lm-archive $out_dir/lm_data.pt done fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Generate LM validation data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/valid.txt ]; then files=$( find "$dl_dir/LibriSpeech/dev-clean" -name "*.trans.txt" find "$dl_dir/LibriSpeech/dev-other" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $out_dir/valid.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/valid.txt \ --lm-archive $out_dir/lm_data-valid.pt done fi if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then log "Stage 13: Generate LM test data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/test.txt ]; then files=$( find "$dl_dir/LibriSpeech/test-clean" -name "*.trans.txt" find "$dl_dir/LibriSpeech/test-other" -name "*.trans.txt" ) for f in ${files[@]}; do cat $f | cut -d " " -f 2- done > $out_dir/test.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/test.txt \ --lm-archive $out_dir/lm_data-test.pt done fi if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then log "Stage 14: Sort LM training data" # Sort LM training data by sentence length in descending order # for ease of training. # # Sentence length equals to the number of BPE tokens # in a sentence. for vocab_size in ${vocab_sizes[@]}; do out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data.pt \ --out-lm-data $out_dir/sorted_lm_data.pt \ --out-statistics $out_dir/statistics.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-valid.pt \ --out-lm-data $out_dir/sorted_lm_data-valid.pt \ --out-statistics $out_dir/statistics-valid.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-test.pt \ --out-lm-data $out_dir/sorted_lm_data-test.pt \ --out-statistics $out_dir/statistics-test.txt done fi