#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail nj=15 stage=-1 stop_stage=100 # We assume dl_dir (download dir) contains the following # directories and files. Most of them can't be downloaded automatically # as they are not publically available and require a license purchased # from the LDC. # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=./download # swbd1_dir="/export/corpora3/LDC/LDC97S62" swbd1_dir=./download/LDC97S62/ # eval2000_dir contains the following files and directories # downloaded from LDC website: # - LDC2002S09 # - hub5e_00 # - LDC2002T43 # - reference eval2000_dir="/export/corpora2/LDC/eval2000" rt03_dir="/export/corpora/LDC/LDC2007S10" fisher_dir="/export/corpora3/LDC/LDC2004T19" . shared/parse_options.sh || exit 1 # vocab size for sentence piece models. # It will generate data/lang_bpe_xxx, # data/lang_bpe_yyy if the array contains xxx, yyy vocab_sizes=( # 5000 # 2000 1000 500 ) # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "swbd1_dir: $swbd1_dir" log "eval2000_dir: $eval2000_dir" log "rt03_dir: $rt03_dir" if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare SwitchBoard manifest" # We assume that you have downloaded the SwitchBoard corpus # to respective dirs mkdir -p data/manifests if [ ! -e data/manifests/.swbd.done ]; then lhotse prepare switchboard --absolute-paths 1 --omit-silence $swbd1_dir data/manifests/swbd ./local/normalize_and_filter_supervisions.py \ data/manifests/swbd/swbd_supervisions_all.jsonl.gz \ data/manifests/swbd/swbd_supervisions_all_norm.jsonl.gz mv data/manifests/swbd/swbd_supervisions_all.jsonl.gz data/manifests/swbd/swbd_supervisions_orig.jsonl.gz mv data/manifests/swbd/swbd_supervisions_all_norm.jsonl.gz data/manifests/swbd/swbd_supervisions_all.jsonl.gz lhotse cut simple \ -r data/manifests/swbd/swbd_recordings_all.jsonl.gz \ -s data/manifests/swbd/swbd_supervisions_all.jsonl.gz \ data/manifests/swbd/swbd_train_all.jsonl.gz lhotse cut trim-to-supervisions \ --discard-overlapping \ --discard-extra-channels \ data/manifests/swbd/swbd_train_all.jsonl.gz \ data/manifests/swbd/swbd_train_all_trimmed.jsonl.gz num_splits=16 mkdir -p data/manifests/swbd_split${num_splits} lhotse split ${num_splits} \ data/manifests/swbd/swbd_train_all_trimmed.jsonl.gz \ data/manifests/swbd_split${num_splits} lhotse prepare eval2000 --absolute-paths 1 $eval2000_dir data/manifests/eval2000 ./local/normalize_eval2000.py \ data/manifests/eval2000/eval2000_supervisions_unnorm.jsonl.gz \ data/manifests/eval2000/eval2000_supervisions_all.jsonl.gz lhotse cut simple \ -r data/manifests/eval2000/eval2000_recordings_all.jsonl.gz \ -s data/manifests/eval2000/eval2000_supervisions_all.jsonl.gz \ data/manifests/eval2000/eval2000_cuts_all.jsonl.gz lhotse cut trim-to-supervisions \ --discard-overlapping \ --discard-extra-channels \ data/manifests/eval2000/eval2000_cuts_all.jsonl.gz \ data/manifests/eval2000/eval2000_cuts_all_trimmed.jsonl.gz sed -e 's:((:(:' -e 's:::g' -e 's:::g' \ $eval2000_dir/LDC2002T43/reference/hub5e00.english.000405.stm > data/manifests/eval2000/stm cp $eval2000_dir/LDC2002T43/reference/en20000405_hub5.glm $dir/glm # ./local/rt03_data_prep.sh $rt03_dir # normalize eval2000 and rt03 texts by # 1) convert upper to lower # 2) remove tags (%AH) (%HESITATION) (%UH) # 3) remove # 4) remove "(" or ")" # for x in rt03; do # cp data/local/${x}/text data/local/${x}/text.org # paste -d "" \ # <(cut -f 1 -d" " data/local/${x}/text.org) \ # <(awk '{$1=""; print tolower($0)}' data/local/${x}/text.org | perl -pe 's| \(\%.*\)||g' | perl -pe 's| \<.*\>||g' | sed -e "s/(//g" -e "s/)//g") | # sed -e 's/\s\+/ /g' >data/local/${x}/text # rm data/local/${x}/text.org # done # lhotse fix data/manifests_rt03/swbd_recordings_rt03.jsonl.gz data/manifests_rt03/swbd_supervisions_rt03.jsonl.gz data/manifests touch data/manifests/.swbd.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to $dl_dir/musan mkdir -p data/manifests if [ ! -e data/manifests/.musan.done ]; then lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3 I: Compute fbank for SwitchBoard" if [ ! -e data/fbank/.swbd.done ]; then mkdir -p data/fbank/swbd_split${num_splits}/ for index in $(seq 1 16); do ./local/compute_fbank_swbd.py --split-index ${index} & done wait pieces=$(find data/fbank/swbd_split${num_splits} -name "swbd_cuts_all.*.jsonl.gz") lhotse combine $pieces data/fbank/swbd_cuts_all.jsonl.gz touch data/fbank/.swbd.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3 II: Compute fbank for eval2000" if [ ! -e data/fbank/.eval2000.done ]; then mkdir -p data/fbank/eval2000/ ./local/compute_fbank_eval2000.py touch data/fbank/.eval2000.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" mkdir -p data/fbank if [ ! -e data/fbank/.musan.done ]; then ./local/compute_fbank_musan.py touch data/fbank/.musan.done fi fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" lang_dir=data/lang_phone mkdir -p $lang_dir if ! which jq; then echo "This script is intended to be used with jq but you have not installed jq Note: in Linux, you can install jq with the following command: 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 2. chmod +x ./jq 3. cp jq /usr/bin" && exit 1 fi if [ ! -f $lang_dir/text ] || [ ! -s $lang_dir/text ]; then log "Prepare text." gunzip -c data/manifests/swbd/swbd_supervisions_all.jsonl.gz \ | jq '.text' | sed 's/"//g' > $lang_dir/text fi log "Prepare dict" ./local/swbd1_prepare_dict.sh cut -f 2- -d" " $lang_dir/text >${lang_dir}/input.txt # [noise] nsn # !sil sil # spn cat data/local/dict_nosp/lexicon.txt | sed 's/-//g' | sed 's/\[vocalizednoise\]/\[vocalized-noise\]/g' | sort | uniq >$lang_dir/lexicon_lower.txt cat $lang_dir/lexicon_lower.txt | tr a-z A-Z > $lang_dir/lexicon.txt if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_dir fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare BPE based lang" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} mkdir -p $lang_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp data/lang_phone/words.txt $lang_dir if [ ! -f $lang_dir/transcript_words.txt ]; then log "Generate data for BPE training" cat data/lang_phone/text | cut -d " " -f 2- >$lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/bpe.model ]; then ./local/train_bpe_model.py \ --lang-dir $lang_dir \ --vocab-size $vocab_size \ --transcript $lang_dir/transcript_words.txt fi if [ ! -f $lang_dir/L_disambig.pt ]; then ./local/prepare_lang_bpe.py --lang-dir $lang_dir log "Validating $lang_dir/lexicon.txt" ./local/validate_bpe_lexicon.py \ --lexicon $lang_dir/lexicon.txt \ --bpe-model $lang_dir/bpe.model fi if [ ! -f $lang_dir/L.fst ]; then log "Converting L.pt to L.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L.pt \ $lang_dir/L.fst fi if [ ! -f $lang_dir/L_disambig.fst ]; then log "Converting L_disambig.pt to L_disambig.fst" ./shared/convert-k2-to-openfst.py \ --olabels aux_labels \ $lang_dir/L_disambig.pt \ $lang_dir/L_disambig.fst fi done fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare bigram token-level P for MMI training" for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} if [ ! -f $lang_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_dir/lexicon.txt \ --transcript $lang_dir/transcript_words.txt \ --oov "" \ >$lang_dir/transcript_tokens.txt fi if [ ! -f $lang_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_dir/transcript_tokens.txt \ -lm $lang_dir/P.arpa fi if [ ! -f $lang_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_dir/P.arpa >$lang_dir/P.fst.txt fi done fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Prepare G" lang_dir=data/lang_phone # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG ./shared/make_kn_lm.py \ -ngram-order 3 \ -text ${lang_dir}/input.txt \ -lm data/lm/3-gram.arpa python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.arpa >data/lm/G_3_gram.fst.txt fi if [ ! -f data/lm/G_4_gram.fst.txt ]; then # It is used for LM rescoring ./shared/make_kn_lm.py \ -ngram-order 4 \ -text ${lang_dir}/input.txt \ -lm data/lm/4-gram.arpa python3 -m kaldilm \ --read-symbol-table="data/lang_phone/words.txt" \ --disambig-symbol='#0' \ --max-order=4 \ data/lm/4-gram.arpa >data/lm/G_4_gram.fst.txt fi fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compile HLG" ./local/compile_hlg.py --lang-dir data/lang_phone # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_hlg.py --lang-dir $lang_dir # Note If ./local/compile_hlg.py throws OOM, # please switch to the following command # # ./local/compile_hlg_using_openfst.py --lang-dir $lang_dir done fi # Compile LG for RNN-T fast_beam_search decoding if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compile LG" ./local/compile_lg.py --lang-dir data/lang_phone for vocab_size in ${vocab_sizes[@]}; do lang_dir=data/lang_bpe_${vocab_size} ./local/compile_lg.py --lang-dir $lang_dir done fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Generate LM training data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" lang_dir=data/lang_bpe_${vocab_size} out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/train.txt ]; then tail -n 250000 data/lang_phone/input.txt > $out_dir/train.txt fi ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data data/lang_phone/input.txt \ --lm-archive $out_dir/lm_data.pt done fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Generate LM validation data" for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/valid.txt ]; then head -n 14332 data/lang_phone/input.txt > $out_dir/valid.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/valid.txt \ --lm-archive $out_dir/lm_data-valid.pt done fi if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then log "Stage 13: Generate LM test data" testsets=(eval2000) for testset in ${testsets[@]}; do for vocab_size in ${vocab_sizes[@]}; do log "Processing vocab_size == ${vocab_size}" out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir if [ ! -f $out_dir/${testset}.txt ]; then gunzip -c data/manifests/${testset}/eval2000_supervisions_all.jsonl.gz \ | jq '.text' | sed 's/"//g' > $out_dir/${testset}.txt fi lang_dir=data/lang_bpe_${vocab_size} ./local/prepare_lm_training_data.py \ --bpe-model $lang_dir/bpe.model \ --lm-data $out_dir/${testset}.txt \ --lm-archive $out_dir/lm_data-${testset}.pt done done fi if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then log "Stage 14: Sort LM training data" testsets=(eval2000) # Sort LM training data by sentence length in descending order # for ease of training. # # Sentence length equals to the number of BPE tokens # in a sentence. for vocab_size in ${vocab_sizes[@]}; do out_dir=data/lm_training_bpe_${vocab_size} mkdir -p $out_dir ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data.pt \ --out-lm-data $out_dir/sorted_lm_data.pt \ --out-statistics $out_dir/statistics.txt for testset in ${testsets[@]}; do ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data-${testset}.pt \ --out-lm-data $out_dir/sorted_lm_data-${testset}.pt \ --out-statistics $out_dir/statistics-test-${testset}.txt done done fi