#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script checks that there are no OOV tokens in the BPE-based lexicon. Usage example: python3 ./local/validate_bpe_lexicon.py \ --lexicon /path/to/lexicon.txt \ --bpe-model /path/to/bpe.model """ import argparse from pathlib import Path from typing import List, Tuple import sentencepiece as spm from icefall.lexicon import read_lexicon # Map word to word pieces Lexicon = List[Tuple[str, List[str]]] def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--lexicon", required=True, type=Path, help="Path to lexicon.txt", ) parser.add_argument( "--bpe-model", required=True, type=Path, help="Path to bpe.model", ) return parser.parse_args() def main(): args = get_args() assert args.lexicon.is_file(), args.lexicon assert args.bpe_model.is_file(), args.bpe_model lexicon = read_lexicon(args.lexicon) sp = spm.SentencePieceProcessor() sp.load(str(args.bpe_model)) word_pieces = set(sp.id_to_piece(list(range(sp.vocab_size())))) for word, pieces in lexicon: for p in pieces: if p not in word_pieces: raise ValueError(f"The word {word} contains an OOV token {p}") if __name__ == "__main__": main()