#!/usr/bin/env bash set -eou pipefail nj=15 stage=-1 stop_stage=10 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/aishell # You can find data_aishell, resource_aishell inside it. # You can download them from https://www.openslr.org/33 # # - $dl_dir/lm # This directory contains the language model downloaded from # https://huggingface.co/pkufool/aishell_lm # # - 3-gram.unpruned.apra # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then log "stage -1: Download LM" # We assume that you have installed the git-lfs, if not, you could install it # using: `sudo apt-get install git-lfs && git-lfs install` if [ ! -f $dl_dir/lm/3-gram.unpruned.arpa ]; then git clone https://huggingface.co/pkufool/aishell_lm $dl_dir/lm fi fi if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download data" # If you have pre-downloaded it to /path/to/aishell, # you can create a symlink # # ln -sfv /path/to/aishell $dl_dir/aishell # # The directory structure is # aishell/ # |-- data_aishell # | |-- transcript # | `-- wav # `-- resource_aishell # |-- lexicon.txt # `-- speaker.info if [ ! -d $dl_dir/aishell/data_aishell/wav ]; then lhotse download aishell $dl_dir fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare aishell manifest" # We assume that you have downloaded the aishell corpus # to $dl_dir/aishell if [ ! -f data/manifests/.aishell_manifests.done ]; then mkdir -p data/manifests lhotse prepare aishell $dl_dir/aishell data/manifests touch data/manifests/.aishell_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for aishell" if [ ! -f data/fbank/.aishell.done ]; then mkdir -p data/fbank ./local/compute_fbank_aishell.py touch data/fbank/.aishell.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi lang_phone_dir=data/lang_phone lang_char_dir=data/lang_char if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare phone based lang" mkdir -p $lang_phone_dir (echo '!SIL SIL'; echo ' SPN'; echo ' SPN'; ) | cat - $dl_dir/aishell/resource_aishell/lexicon.txt | sort | uniq > $lang_phone_dir/lexicon.txt ./local/generate_unique_lexicon.py --lang-dir $lang_phone_dir if [ ! -f $lang_phone_dir/L_disambig.pt ]; then ./local/prepare_lang.py --lang-dir $lang_phone_dir fi # Train a bigram P for MMI training if [ ! -f $lang_phone_dir/transcript_words.txt ]; then log "Generate data to train phone based bigram P" aishell_text=$dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt aishell_train_uid=$dl_dir/aishell/data_aishell/transcript/aishell_train_uid find $dl_dir/aishell/data_aishell/wav/train -name "*.wav" | sed 's/\.wav//g' | awk -F '/' '{print $NF}' > $aishell_train_uid awk 'NR==FNR{uid[$1]=$1} NR!=FNR{if($1 in uid) print $0}' $aishell_train_uid $aishell_text | cut -d " " -f 2- > $lang_phone_dir/transcript_words.txt fi if [ ! -f $lang_phone_dir/transcript_tokens.txt ]; then ./local/convert_transcript_words_to_tokens.py \ --lexicon $lang_phone_dir/uniq_lexicon.txt \ --transcript $lang_phone_dir/transcript_words.txt \ --oov "" \ > $lang_phone_dir/transcript_tokens.txt fi if [ ! -f $lang_phone_dir/P.arpa ]; then ./shared/make_kn_lm.py \ -ngram-order 2 \ -text $lang_phone_dir/transcript_tokens.txt \ -lm $lang_phone_dir/P.arpa fi if [ ! -f $lang_phone_dir/P.fst.txt ]; then python3 -m kaldilm \ --read-symbol-table="$lang_phone_dir/tokens.txt" \ --disambig-symbol='#0' \ --max-order=2 \ $lang_phone_dir/P.arpa > $lang_phone_dir/P.fst.txt fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare char based lang" mkdir -p $lang_char_dir # We reuse words.txt from phone based lexicon # so that the two can share G.pt later. cp $lang_phone_dir/words.txt $lang_char_dir cat $dl_dir/aishell/data_aishell/transcript/aishell_transcript_v0.8.txt | cut -d " " -f 2- | sed -e 's/[ \t\r\n]*//g' > $lang_char_dir/text if [ ! -f $lang_char_dir/L_disambig.pt ]; then ./local/prepare_char.py fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Prepare G" # We assume you have install kaldilm, if not, please install # it using: pip install kaldilm mkdir -p data/lm if [ ! -f data/lm/G_3_gram.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="$lang_phone_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ $dl_dir/lm/3-gram.unpruned.arpa > data/lm/G_3_gram.fst.txt fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Compile HLG" ./local/compile_hlg.py --lang-dir $lang_phone_dir ./local/compile_hlg.py --lang-dir $lang_char_dir fi