#!/usr/bin/env bash set -eou pipefail nj=15 stage=0 stop_stage=100 # Split L subset to this number of pieces # This is to avoid OOM during feature extraction. num_splits=1000 # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/WenetSpeech # You can find audio, WenetSpeech.json inside it. # You can apply for the download credentials by following # https://github.com/wenet-e2e/WenetSpeech#download # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "Stage 0: Download data" [ ! -e $dl_dir/WenetSpeech ] && mkdir -p $dl_dir/WenetSpeech # If you have pre-downloaded it to /path/to/WenetSpeech, # you can create a symlink # # ln -sfv /path/to/WenetSpeech $dl_dir/WenetSpeech # if [ ! -d $dl_dir/WenetSpeech/wenet_speech ] && [ ! -f $dl_dir/WenetSpeech/metadata/v1.list ]; then log "Stage 0: You should download WenetSpeech first" exit 1; fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # #ln -sfv /path/to/musan $dl_dir/musan if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare WenetSpeech manifest" # We assume that you have downloaded the WenetSpeech corpus # to $dl_dir/WenetSpeech mkdir -p data/manifests lhotse prepare wenet-speech $dl_dir/WenetSpeech data/manifests -j $nj fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Preprocess WenetSpeech manifest" if [ ! -f data/fbank/.preprocess_complete ]; then python3 ./local/preprocess_wenetspeech.py touch data/fbank/.preprocess_complete fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute features for DEV and TEST subsets of WenetSpeech (may take 2 minutes)" python3 ./local/compute_fbank_wenetspeech_dev_test.py fi if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Split S subset into ${num_splits} pieces" split_dir=data/fbank/S_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_S_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Split M subset into ${num_splits} piece" split_dir=data/fbank/M_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_M_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Split L subset into ${num_splits} pieces" split_dir=data/fbank/L_split_${num_splits} if [ ! -f $split_dir/.split_completed ]; then lhotse split $num_splits ./data/fbank/cuts_L_raw.jsonl.gz $split_dir touch $split_dir/.split_completed fi fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Compute features for S" python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset S \ --num-workers 20 \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Compute features for M" python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset M \ --num-workers 20 \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits fi if [ $stage -le 10 ] && [ $stop_stage -ge 10 ]; then log "Stage 10: Compute features for L" python3 ./local/compute_fbank_wenetspeech_splits.py \ --training-subset L \ --num-workers 20 \ --batch-duration 600 \ --start 0 \ --num-splits $num_splits fi if [ $stage -le 11 ] && [ $stop_stage -ge 11 ]; then log "Stage 11: Combine features for S" if [ ! -f data/fbank/cuts_S.jsonl.gz ]; then pieces=$(find data/fbank/S_split_1000 -name "cuts_S.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_S.jsonl.gz fi fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Combine features for M" if [ ! -f data/fbank/cuts_M.jsonl.gz ]; then pieces=$(find data/fbank/M_split_1000 -name "cuts_M.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_M.jsonl.gz fi fi if [ $stage -le 13 ] && [ $stop_stage -ge 13 ]; then log "Stage 13: Combine features for L" if [ ! -f data/fbank/cuts_L.jsonl.gz ]; then pieces=$(find data/fbank/L_split_1000 -name "cuts_L.*.jsonl.gz") lhotse combine $pieces data/fbank/cuts_L.jsonl.gz fi fi if [ $stage -le 14 ] && [ $stop_stage -ge 14 ]; then log "Stage 14: Compute fbank for musan" mkdir -p data/fbank ./local/compute_fbank_musan.py fi if [ $stage -le 15 ] && [ $stop_stage -ge 15 ]; then log "Stage 15: Prepare char based lang" lang_char_dir=data/lang_char mkdir -p $lang_char_dir # Prepare text. # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin if [ ! -f $lang_char_dir/text ]; then gunzip -c data/manifests/supervisions_L.jsonl.gz \ | jq 'text' | sed 's/"//g' \ | ./local/text2token.py -t "char" > $lang_char_dir/text fi # The implementation of chinese word segmentation for text, # and it will take about 15 minutes. if [ ! -f $lang_char_dir/text_words_segmentation ]; then python ./local/text2segments.py \ --input-file $lang_char_dir/text \ --output-file $lang_char_dir/text_words_segmentation fi cat $lang_char_dir/text_words_segmentation | sed 's/ /\n/g' \ | sort -u | sed '/^$/d' | uniq > $lang_char_dir/words_no_ids.txt if [ ! -f $lang_char_dir/words.txt ]; then python ./local/prepare_words.py \ --input-file $lang_char_dir/words_no_ids.txt \ --output-file $lang_char_dir/words.txt fi fi if [ $stage -le 16 ] && [ $stop_stage -ge 16 ]; then log "Stage 16: Prepare char based L_disambig.pt" if [ ! -f data/lang_char/L_disambig.pt ]; then python ./local/prepare_char.py \ --lang-dir data/lang_char fi fi