#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corporation (Authors: Wei Kang, Fangjun Kuang, Mingshuang Luo) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Usage: ./pruned_transducer_stateless2/streaming_decode.py \ --epoch 10 \ --avg 2 \ --left-context 32 \ --decode-chunk-size 8 \ --right-context 2 \ --exp-dir ./pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --decoding_method greedy_search \ --num-decode-streams 1000 """ import argparse import logging import math from pathlib import Path from typing import Dict, List, Optional, Tuple import k2 import numpy as np import torch import torch.nn as nn from asr_datamodule import WenetSpeechAsrDataModule from decode_stream import DecodeStream from kaldifeat import Fbank, FbankOptions from lhotse import CutSet from lhotse.cut import Cut from torch.nn.utils.rnn import pad_sequence from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( average_checkpoints, find_checkpoints, load_checkpoint, ) from icefall.decode import one_best_decoding from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, get_texts, setup_logger, store_transcripts, write_error_stats, ) LOG_EPS = math.log(1e-10) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--epoch", type=int, default=28, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 0. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=15, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--avg-last-n", type=int, default=0, help="""If positive, --epoch and --avg are ignored and it will use the last n checkpoints exp_dir/checkpoint-xxx.pt where xxx is the number of processed batches while saving that checkpoint. """, ) parser.add_argument( "--exp-dir", type=str, default="pruned_transducer_stateless2/exp", help="The experiment dir", ) parser.add_argument( "--lang-dir", type=str, default="data/lang_char", help="""The lang dir It contains language related input files such as "lexicon.txt" """, ) parser.add_argument( "--decoding-method", type=str, default="greedy_search", help="""Support only greedy_search and fast_beam_search now. """, ) parser.add_argument( "--beam", type=float, default=4, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-contexts", type=int, default=4, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--max-states", type=int, default=32, help="""Used only when --decoding-method is fast_beam_search""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", ) parser.add_argument( "--decode-chunk-size", type=int, default=16, help="The chunk size for decoding (in frames after subsampling)", ) parser.add_argument( "--left-context", type=int, default=64, help="left context can be seen during decoding (in frames after subsampling)", ) parser.add_argument( "--right-context", type=int, default=4, help="right context can be seen during decoding (in frames after subsampling)", ) parser.add_argument( "--num-decode-streams", type=int, default=2000, help="The number of streams that can be decoded parallel.", ) add_model_arguments(parser) return parser def greedy_search( model: nn.Module, encoder_out: torch.Tensor, streams: List[DecodeStream], ) -> List[List[int]]: assert len(streams) == encoder_out.size(0) assert encoder_out.ndim == 3 blank_id = model.decoder.blank_id context_size = model.decoder.context_size device = model.device T = encoder_out.size(1) decoder_input = torch.tensor( [stream.hyp[-context_size:] for stream in streams], device=device, dtype=torch.int64, ) # decoder_out is of shape (N, decoder_out_dim) decoder_out = model.decoder(decoder_input, need_pad=False) decoder_out = model.joiner.decoder_proj(decoder_out) # logging.info(f"decoder_out shape : {decoder_out.shape}") for t in range(T): # current_encoder_out's shape: (batch_size, 1, encoder_out_dim) current_encoder_out = encoder_out[:, t : t + 1, :] # noqa logits = model.joiner( current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1), project_input=False, ) # logits'shape (batch_size, vocab_size) logits = logits.squeeze(1).squeeze(1) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: streams[i].hyp.append(v) emitted = True if emitted: # update decoder output decoder_input = torch.tensor( [stream.hyp[-context_size:] for stream in streams], device=device, dtype=torch.int64, ) decoder_out = model.decoder( decoder_input, need_pad=False, ) decoder_out = model.joiner.decoder_proj(decoder_out) hyp_tokens = [] for stream in streams: hyp_tokens.append(stream.hyp) return hyp_tokens def fast_beam_search( model: nn.Module, encoder_out: torch.Tensor, processed_lens: torch.Tensor, decoding_streams: k2.RnntDecodingStreams, ) -> List[List[int]]: B, T, C = encoder_out.shape for t in range(T): # shape is a RaggedShape of shape (B, context) # contexts is a Tensor of shape (shape.NumElements(), context_size) shape, contexts = decoding_streams.get_contexts() # `nn.Embedding()` in torch below v1.7.1 supports only torch.int64 contexts = contexts.to(torch.int64) # decoder_out is of shape (shape.NumElements(), 1, decoder_out_dim) decoder_out = model.decoder(contexts, need_pad=False) decoder_out = model.joiner.decoder_proj(decoder_out) # current_encoder_out is of shape # (shape.NumElements(), 1, joiner_dim) # fmt: off current_encoder_out = torch.index_select( encoder_out[:, t:t + 1, :], 0, shape.row_ids(1).to(torch.int64) ) # fmt: on logits = model.joiner( current_encoder_out.unsqueeze(2), decoder_out.unsqueeze(1), project_input=False, ) logits = logits.squeeze(1).squeeze(1) log_probs = logits.log_softmax(dim=-1) decoding_streams.advance(log_probs) decoding_streams.terminate_and_flush_to_streams() lattice = decoding_streams.format_output(processed_lens.tolist()) best_path = one_best_decoding(lattice) hyp_tokens = get_texts(best_path) return hyp_tokens def decode_one_chunk( params: AttributeDict, model: nn.Module, decode_streams: List[DecodeStream], ) -> List[int]: """Decode one chunk frames of features for each decode_streams and return the indexes of finished streams in a List. Args: params: It's the return value of :func:`get_params`. model: The neural model. decode_streams: A List of DecodeStream, each belonging to a utterance. Returns: Return a List containing which DecodeStreams are finished. """ device = model.device features = [] feature_lens = [] states = [] rnnt_stream_list = [] processed_lens = [] for stream in decode_streams: feat, feat_len = stream.get_feature_frames( params.decode_chunk_size * params.subsampling_factor ) features.append(feat) feature_lens.append(feat_len) states.append(stream.states) processed_lens.append(stream.done_frames) if params.decoding_method == "fast_beam_search": rnnt_stream_list.append(stream.rnnt_decoding_stream) feature_lens = torch.tensor(feature_lens, device=device) features = pad_sequence(features, batch_first=True, padding_value=LOG_EPS) # if T is less than 7 there will be an error in time reduction layer, # because we subsample features with ((x_len - 1) // 2 - 1) // 2 # we plus 2 here because we will cut off one frame on each size of # encoder_embed output as they see invalid paddings. so we need extra 2 # frames. tail_length = 7 + (2 + params.right_context) * params.subsampling_factor if features.size(1) < tail_length: feature_lens += tail_length - features.size(1) features = torch.cat( [ features, torch.tensor( LOG_EPS, dtype=features.dtype, device=device ).expand( features.size(0), tail_length - features.size(1), features.size(2), ), ], dim=1, ) states = [ torch.stack([x[0] for x in states], dim=2), torch.stack([x[1] for x in states], dim=2), ] processed_lens = torch.tensor(processed_lens, device=device) encoder_out, encoder_out_lens, states = model.encoder.streaming_forward( x=features, x_lens=feature_lens, states=states, left_context=params.left_context, right_context=params.right_context, processed_lens=processed_lens, ) encoder_out = model.joiner.encoder_proj(encoder_out) if params.decoding_method == "greedy_search": hyp_tokens = greedy_search(model, encoder_out, decode_streams) elif params.decoding_method == "fast_beam_search": config = k2.RnntDecodingConfig( vocab_size=params.vocab_size, decoder_history_len=params.context_size, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, ) decoding_streams = k2.RnntDecodingStreams(rnnt_stream_list, config) processed_lens = processed_lens + encoder_out_lens hyp_tokens = fast_beam_search( model, encoder_out, processed_lens, decoding_streams ) else: assert False states = [torch.unbind(states[0], dim=2), torch.unbind(states[1], dim=2)] finished_streams = [] for i in range(len(decode_streams)): decode_streams[i].states = [states[0][i], states[1][i]] decode_streams[i].done_frames += encoder_out_lens[i] if params.decoding_method == "fast_beam_search": decode_streams[i].hyp = hyp_tokens[i] if decode_streams[i].done: finished_streams.append(i) return finished_streams def decode_dataset( cuts: CutSet, params: AttributeDict, model: nn.Module, lexicon: Lexicon, decoding_graph: Optional[k2.Fsa] = None, ) -> Dict[str, List[Tuple[List[str], List[str]]]]: """Decode dataset. Args: cuts: Lhotse Cutset containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used only when --decoding_method is fast_beam_search. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ device = model.device opts = FbankOptions() opts.device = device opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = 16000 opts.mel_opts.num_bins = 80 log_interval = 1000 decode_results = [] # Contain decode streams currently running. decode_streams = [] initial_states = model.encoder.get_init_state( params.left_context, device=device ) for num, cut in enumerate(cuts): # each utterance has a DecodeStream. decode_stream = DecodeStream( params=params, initial_states=initial_states, decoding_graph=decoding_graph, device=device, ) audio: np.ndarray = cut.load_audio() # audio.shape: (1, num_samples) assert len(audio.shape) == 2 assert audio.shape[0] == 1, "Should be single channel" assert audio.dtype == np.float32, audio.dtype samples = torch.from_numpy(audio).squeeze(0) fbank = Fbank(opts) feature = fbank(samples.to(device)) decode_stream.set_features(feature) decode_stream.ground_truth = cut.supervisions[0].text decode_streams.append(decode_stream) while len(decode_streams) >= params.num_decode_streams: finished_streams = decode_one_chunk(params, model, decode_streams) for i in sorted(finished_streams, reverse=True): hyp = decode_streams[i].hyp if params.decoding_method == "greedy_search": hyp = hyp[params.context_size :] # noqa decode_results.append( ( list(decode_streams[i].ground_truth), [lexicon.token_table[idx] for idx in hyp], ) ) del decode_streams[i] if num % log_interval == 0: logging.info(f"Cuts processed until now is {num}.") # decode final chunks of last sequences while len(decode_streams): finished_streams = decode_one_chunk(params, model, decode_streams) for i in sorted(finished_streams, reverse=True): hyp = decode_streams[i].hyp if params.decoding_method == "greedy_search": hyp = hyp[params.context_size :] # noqa decode_results.append( ( decode_streams[i].ground_truth.split(), [lexicon.token_table[idx] for idx in hyp], ) ) del decode_streams[i] key = "greedy_search" if params.decoding_method == "fast_beam_search": key = ( f"beam_{params.beam}_" f"max_contexts_{params.max_contexts}_" f"max_states_{params.max_states}" ) return {key: decode_results} def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[List[str], List[str]]]], ): test_set_wers = dict() for key, results in results_dict.items(): recog_path = ( params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" ) # sort results so we can easily compare the difference between two # recognition results results = sorted(results) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=True ) test_set_wers[key] = wer logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = ( params.res_dir / f"wer-summary-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() WenetSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) params.res_dir = params.exp_dir / "streaming" / params.decoding_method if params.iter > 0: params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" # for streaming params.suffix += f"-streaming-chunk-size-{params.decode_chunk_size}" params.suffix += f"-left-context-{params.left_context}" params.suffix += f"-right-context-{params.right_context}" # for fast_beam_search if params.decoding_method == "fast_beam_search": params.suffix += f"-beam-{params.beam}" params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" setup_logger(f"{params.res_dir}/log-decode-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") lexicon = Lexicon(params.lang_dir) params.blank_id = lexicon.token_table[""] params.unk_id = lexicon.token_table[""] params.vocab_size = max(lexicon.tokens) + 1 # Decoding in streaming requires causal convolution params.causal_convolution = True logging.info(params) logging.info("About to create model") model = get_transducer_model(params) if params.avg_last_n > 0: filenames = find_checkpoints(params.exp_dir)[: params.avg_last_n] logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) elif params.batch is not None: filenames = f"{params.exp_dir}/checkpoint-{params.batch}.pt" logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints([filenames], device=device)) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if start >= 0: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) model.to(device) model.eval() model.device = device decoding_graph = None if params.decoding_method == "fast_beam_search": decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) num_param = sum([p.numel() for p in model.parameters()]) logging.info(f"Number of model parameters: {num_param}") def remove_short_and_long_utt(c: Cut): # Keep only utterances with duration between 1 second and 15.0 seconds # # Caution: There is a reason to select 15.0 here. Please see # ../local/display_manifest_statistics.py # # You should use ../local/display_manifest_statistics.py to get # an utterance duration distribution for your dataset to select # the threshold return 1.0 <= c.duration wenetspeech = WenetSpeechAsrDataModule(args) dev_cuts = wenetspeech.valid_cuts() test_net_cuts = wenetspeech.test_net_cuts() test_meeting_cuts = wenetspeech.test_meeting_cuts() dev_cuts = dev_cuts.filter(remove_short_and_long_utt) test_net_cuts = test_net_cuts.filter(remove_short_and_long_utt) test_meeting_cuts = test_meeting_cuts.filter(remove_short_and_long_utt) test_sets = ["DEV", "TEST_NET", "TEST_MEETING"] test_cuts = [dev_cuts, test_net_cuts, test_meeting_cuts] for test_set, test_cut in zip(test_sets, test_cuts): results_dict = decode_dataset( cuts=test_cut, params=params, model=model, lexicon=lexicon, decoding_graph=decoding_graph, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict, ) logging.info("Done!") if __name__ == "__main__": main()