import argparse import logging import math import pprint from collections import defaultdict from pathlib import Path from typing import Dict, List, Optional, Tuple import k2 import sentencepiece as spm import torch import torch.nn as nn from asr_datamodule import LibriSpeechAsrDataModule from beam_search import ( beam_search, fast_beam_search_nbest, fast_beam_search_nbest_LG, fast_beam_search_nbest_oracle, fast_beam_search_one_best, greedy_search, greedy_search_batch, modified_beam_search, ) from train import add_model_arguments, get_params, get_transducer_model from icefall.checkpoint import ( average_checkpoints, average_checkpoints_with_averaged_model, find_checkpoints, load_checkpoint, ) from icefall.lexicon import Lexicon from icefall.utils import ( AttributeDict, setup_logger, store_transcripts, str2bool, write_error_stats, ) LOG_EPS = math.log(1e-10) def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--exp-dir", type=str, default="tiny_transducer_ctc/exp", help="The experiment dir", ) parser.add_argument( "--epoch", type=int, default=30, help="""It specifies the checkpoint to use for decoding. Note: Epoch counts from 1. You can specify --avg to use more checkpoints for model averaging.""", ) parser.add_argument( "--iter", type=int, default=0, help="""If positive, --epoch is ignored and it will use the checkpoint exp_dir/checkpoint-iter.pt. You can specify --avg to use more checkpoints for model averaging. """, ) parser.add_argument( "--avg", type=int, default=1, help="Number of checkpoints to average. Automatically select " "consecutive checkpoints before the checkpoint specified by " "'--epoch' and '--iter'", ) parser.add_argument( "--use-averaged-model", type=str2bool, default=True, help="Whether to load averaged model. Currently it only supports " "using --epoch. If True, it would decode with the averaged model " "over the epoch range from `epoch-avg` (excluded) to `epoch`." "Actually only the models with epoch number of `epoch-avg` and " "`epoch` are loaded for averaging. ", ) parser.add_argument( "--lang-dir", type=Path, default="data/lang_bpe_500", help="The lang dir containing word table and LG graph", ) parser.add_argument( "--decoding-method", type=str, default="fast_beam_search", help="""Possible values are: - greedy_search - beam_search - modified_beam_search - fast_beam_search - fast_beam_search_LG - fast_beam_search_nbest - fast_beam_search_nbest_oracle - fast_beam_search_nbest_LG """, ) parser.add_argument( "--beam-size", type=int, default=4, help="""An integer indicating how many candidates we will keep for each frame. Used only when --decoding-method is beam_search or modified_beam_search.""", ) parser.add_argument( "--beam", type=float, default=20.0, help="""A floating point value to calculate the cutoff score during beam search (i.e., `cutoff = max-score - beam`), which is the same as the `beam` in Kaldi. Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle """, ) parser.add_argument( "--ngram-lm-scale", type=float, default=0.1, help=""" Used only when --decoding_method is fast_beam_search_LG or fast_beam_search_nbest_LG. It specifies the scale for n-gram LM scores. """, ) parser.add_argument( "--max-contexts", type=int, default=8, help="""Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--max-states", type=int, default=64, help="""Used only when --decoding-method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--context-size", type=int, default=2, help="The context size in the decoder. 1 means bigram; " "2 means tri-gram", ) parser.add_argument( "--max-sym-per-frame", type=int, default=1, help="""Maximum number of symbols per frame. Used only when --decoding_method is greedy_search""", ) parser.add_argument( "--num-paths", type=int, default=100, help="""Number of paths for nbest decoding. Used only when the decoding method is fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) parser.add_argument( "--nbest-scale", type=float, default=0.5, help="""Scale applied to lattice scores when computing nbest paths. Used only when the decoding method is fast_beam_search_nbest, fast_beam_search_nbest_LG, and fast_beam_search_nbest_oracle""", ) add_model_arguments(parser) return parser def decode_one_batch( params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, batch: dict, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, ) -> Dict[str, List[List[str]]]: """Decode one batch and return the result in a dict. The dict has the following format: - key: It indicates the setting used for decoding. For example, if greedy_search is used, it would be "greedy_search" If beam search with a beam size of 7 is used, it would be "beam_7" - value: It contains the decoding result. `len(value)` equals to batch size. `value[i]` is the decoding result for the i-th utterance in the given batch. Args: params: It's the return value of :func:`get_params`. model: The neural model. sp: The BPE model. batch: It is the return value from iterating `lhotse.dataset.K2SpeechRecognitionDataset`. See its documentation for the format of the `batch`. word_table: The word symbol table. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used only when --decoding_method is fast_beam_search, fast_beam_search_LG, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return the decoding result. See above description for the format of the returned dict. """ device = next(model.parameters()).device feature = batch["inputs"] assert feature.ndim == 3 feature = feature.to(device) # at entry, feature is (N, T, C) supervisions = batch["supervisions"] feature_lens = supervisions["num_frames"].to(device) encoder_out, encoder_out_lens = model.encoder(x=feature, x_lens=feature_lens) hyps = [] if ( params.decoding_method == "fast_beam_search" or params.decoding_method == "fast_beam_search_LG" ): hyp_tokens = fast_beam_search_one_best( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, ) if params.decoding_method == "fast_beam_search": for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) else: for hyp in hyp_tokens: hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest_LG": hyp_tokens = fast_beam_search_nbest_LG( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, num_paths=params.num_paths, nbest_scale=params.nbest_scale, ) for hyp in hyp_tokens: hyps.append([word_table[i] for i in hyp]) elif params.decoding_method == "fast_beam_search_nbest": hyp_tokens = fast_beam_search_nbest( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, num_paths=params.num_paths, nbest_scale=params.nbest_scale, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "fast_beam_search_nbest_oracle": hyp_tokens = fast_beam_search_nbest_oracle( model=model, decoding_graph=decoding_graph, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam, max_contexts=params.max_contexts, max_states=params.max_states, num_paths=params.num_paths, ref_texts=sp.encode(supervisions["text"]), nbest_scale=params.nbest_scale, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "greedy_search" and params.max_sym_per_frame == 1: hyp_tokens = greedy_search_batch( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) elif params.decoding_method == "modified_beam_search": hyp_tokens = modified_beam_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, beam=params.beam_size, ) for hyp in sp.decode(hyp_tokens): hyps.append(hyp.split()) else: batch_size = encoder_out.size(0) for i in range(batch_size): # fmt: off encoder_out_i = encoder_out[i:i+1, :encoder_out_lens[i]] # fmt: on if params.decoding_method == "greedy_search": hyp = greedy_search( model=model, encoder_out=encoder_out_i, max_sym_per_frame=params.max_sym_per_frame, ) elif params.decoding_method == "beam_search": hyp = beam_search( model=model, encoder_out=encoder_out_i, beam=params.beam_size, ) else: raise ValueError( f"Unsupported decoding method: {params.decoding_method}" ) hyps.append(sp.decode(hyp).split()) if params.decoding_method == "greedy_search": return {"greedy_search": hyps} elif "fast_beam_search" in params.decoding_method: key = f"beam_{params.beam}_" key += f"max_contexts_{params.max_contexts}_" key += f"max_states_{params.max_states}" if "nbest" in params.decoding_method: key += f"_num_paths_{params.num_paths}_" key += f"nbest_scale_{params.nbest_scale}" if "LG" in params.decoding_method: key += f"_ngram_lm_scale_{params.ngram_lm_scale}" return {key: hyps} else: return {f"beam_size_{params.beam_size}": hyps} def decode_dataset( dl: torch.utils.data.DataLoader, params: AttributeDict, model: nn.Module, sp: spm.SentencePieceProcessor, word_table: Optional[k2.SymbolTable] = None, decoding_graph: Optional[k2.Fsa] = None, ) -> Dict[str, List[Tuple[str, List[str], List[str]]]]: """Decode dataset. Args: dl: PyTorch's dataloader containing the dataset to decode. params: It is returned by :func:`get_params`. model: The neural model. sp: The BPE model. word_table: The word symbol table. decoding_graph: The decoding graph. Can be either a `k2.trivial_graph` or HLG, Used only when --decoding_method is fast_beam_search, fast_beam_search_nbest, fast_beam_search_nbest_oracle, and fast_beam_search_nbest_LG. Returns: Return a dict, whose key may be "greedy_search" if greedy search is used, or it may be "beam_7" if beam size of 7 is used. Its value is a list of tuples. Each tuple contains two elements: The first is the reference transcript, and the second is the predicted result. """ num_cuts = 0 try: num_batches = len(dl) except TypeError: num_batches = "?" if params.decoding_method == "greedy_search": log_interval = 50 else: log_interval = 20 results = defaultdict(list) for batch_idx, batch in enumerate(dl): texts = batch["supervisions"]["text"] cut_ids = [cut.id for cut in batch["supervisions"]["cut"]] hyps_dict = decode_one_batch( params=params, model=model, sp=sp, decoding_graph=decoding_graph, word_table=word_table, batch=batch, ) for name, hyps in hyps_dict.items(): this_batch = [] assert len(hyps) == len(texts) for cut_id, hyp_words, ref_text in zip(cut_ids, hyps, texts): ref_words = ref_text.split() this_batch.append((cut_id, ref_words, hyp_words)) results[name].extend(this_batch) num_cuts += len(texts) if batch_idx % log_interval == 0: batch_str = f"{batch_idx}/{num_batches}" logging.info(f"batch {batch_str}, cuts processed until now is {num_cuts}") return results def save_results( params: AttributeDict, test_set_name: str, results_dict: Dict[str, List[Tuple[str, List[str], List[str]]]], ): test_set_wers = dict() for key, results in results_dict.items(): recog_path = ( params.res_dir / f"recogs-{test_set_name}-{key}-{params.suffix}.txt" ) results = sorted(results) store_transcripts(filename=recog_path, texts=results) logging.info(f"The transcripts are stored in {recog_path}") # The following prints out WERs, per-word error statistics and aligned # ref/hyp pairs. errs_filename = ( params.res_dir / f"errs-{test_set_name}-{key}-{params.suffix}.txt" ) with open(errs_filename, "w") as f: wer = write_error_stats( f, f"{test_set_name}-{key}", results, enable_log=True ) test_set_wers[key] = wer logging.info("Wrote detailed error stats to {}".format(errs_filename)) test_set_wers = sorted(test_set_wers.items(), key=lambda x: x[1]) errs_info = params.res_dir / f"{wer}-{test_set_name}-{key}-{params.suffix}.txt" with open(errs_info, "w") as f: print("settings\tWER", file=f) for key, val in test_set_wers: print("{}\t{}".format(key, val), file=f) s = "\nFor {}, WER of different settings are:\n".format(test_set_name) note = "\tbest for {}".format(test_set_name) for key, val in test_set_wers: s += "{}\t{}{}\n".format(key, val, note) note = "" logging.info(s) @torch.no_grad() def main(): parser = get_parser() LibriSpeechAsrDataModule.add_arguments(parser) args = parser.parse_args() args.exp_dir = Path(args.exp_dir) params = get_params() params.update(vars(args)) assert params.decoding_method in ( "greedy_search", "beam_search", "fast_beam_search", "fast_beam_search_LG", "fast_beam_search_nbest", "fast_beam_search_nbest_LG", "fast_beam_search_nbest_oracle", "modified_beam_search", ) if "lang_phone" in str(params.lang_dir): assert params.decoding_method in ( "fast_beam_search_LG", "fast_beam_search_nbest_LG", ), "For phone lexicon, use a decoding method with LG." params.res_dir = params.exp_dir / params.decoding_method if params.iter > 0: params.suffix = f"iter-{params.iter}-avg-{params.avg}" else: params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" if "fast_beam_search" in params.decoding_method: params.suffix += f"-beam-{params.beam}" params.suffix += f"-max-contexts-{params.max_contexts}" params.suffix += f"-max-states-{params.max_states}" if "nbest" in params.decoding_method: params.suffix += f"-nbest-scale-{params.nbest_scale}" params.suffix += f"-num-paths-{params.num_paths}" if "LG" in params.decoding_method: params.suffix += f"-ngram-lm-scale-{params.ngram_lm_scale}" elif "beam_search" in params.decoding_method: params.suffix += f"-{params.decoding_method}-beam-size-{params.beam_size}" else: params.suffix += f"-context-{params.context_size}" params.suffix += f"-max-sym-per-frame-{params.max_sym_per_frame}" if params.use_averaged_model: params.suffix += "-uam" setup_logger(f"{params.res_dir}/log-{params.suffix}") logging.info("Decoding started") device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda", 0) logging.info(f"Device: {device}") lexicon = Lexicon(params.lang_dir) if "lang_bpe" in str(params.lang_dir): sp = spm.SentencePieceProcessor() sp.load(str(params.lang_dir / "bpe.model")) # and are defined in local/train_bpe_model.py params.blank_id = sp.piece_to_id("") params.unk_id = sp.piece_to_id("") params.vocab_size = sp.get_piece_size() else: params.blank_id = lexicon.token_table.get("") params.unk_id = lexicon.token_table.get("SPN") params.vocab_size = max(lexicon.tokens) + 1 sp = None logging.info(pprint.pformat(params, indent=2)) logging.info("About to create model") model = get_transducer_model(params) if not params.use_averaged_model: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) elif params.avg == 1: load_checkpoint(f"{params.exp_dir}/epoch-{params.epoch}.pt", model) else: start = params.epoch - params.avg + 1 filenames = [] for i in range(start, params.epoch + 1): if i >= 1: filenames.append(f"{params.exp_dir}/epoch-{i}.pt") logging.info(f"averaging {filenames}") model.to(device) model.load_state_dict(average_checkpoints(filenames, device=device)) else: if params.iter > 0: filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ : params.avg + 1 ] if len(filenames) == 0: raise ValueError( f"No checkpoints found for" f" --iter {params.iter}, --avg {params.avg}" ) elif len(filenames) < params.avg + 1: raise ValueError( f"Not enough checkpoints ({len(filenames)}) found for" f" --iter {params.iter}, --avg {params.avg}" ) filename_start = filenames[-1] filename_end = filenames[0] logging.info( "Calculating the averaged model over iteration checkpoints" f" from {filename_start} (excluded) to {filename_end}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) else: assert params.avg > 0, params.avg start = params.epoch - params.avg assert start >= 1, start filename_start = f"{params.exp_dir}/epoch-{start}.pt" filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" logging.info( f"Calculating the averaged model over epoch range from " f"{start} (excluded) to {params.epoch}" ) model.to(device) model.load_state_dict( average_checkpoints_with_averaged_model( filename_start=filename_start, filename_end=filename_end, device=device, ) ) model.to(device) model.eval() if "fast_beam_search" in params.decoding_method: if "LG" in params.decoding_method: word_table = lexicon.word_table lg_filename = params.lang_dir / "LG.pt" logging.info(f"Loading {lg_filename}") decoding_graph = k2.Fsa.from_dict( torch.load(lg_filename, map_location=device) ) decoding_graph.scores *= params.ngram_lm_scale else: word_table = None decoding_graph = k2.trivial_graph(params.vocab_size - 1, device=device) else: decoding_graph = None word_table = None num_param = sum([p.numel() for p in model.parameters()]) enc_param = sum([p.numel() for p in model.encoder.parameters()]) dec_param = sum([p.numel() for p in model.decoder.parameters()]) join_param = sum([p.numel() for p in model.joiner.parameters()]) logging.info(f"Number of model parameters: {num_param}") logging.info( f"Parameters for transducer decoding: {enc_param + dec_param + join_param}" ) # we need cut ids to display recognition results. args.return_cuts = True librispeech = LibriSpeechAsrDataModule(args) test_clean_cuts = librispeech.test_clean_cuts() test_other_cuts = librispeech.test_other_cuts() test_clean_dl = librispeech.test_dataloaders(test_clean_cuts) test_other_dl = librispeech.test_dataloaders(test_other_cuts) test_sets = ["test-clean", "test-other"] test_dl = [test_clean_dl, test_other_dl] for test_set, test_dl in zip(test_sets, test_dl): results_dict = decode_dataset( dl=test_dl, params=params, model=model, sp=sp, word_table=word_table, decoding_graph=decoding_graph, ) save_results( params=params, test_set_name=test_set, results_dict=results_dict, ) logging.info("Done!") if __name__ == "__main__": main()