#!/usr/bin/env python3 # Copyright 2023 Xiaomi Corp. (authors: Daniel Povey) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import random import torch from torch import nn, Tensor class Decoder(nn.Module): """ """ def __init__(self, embed_dim: int, hidden_dim: int, vocab_size: int): """ A 'decoder' that computes the probability of symbols in a language modeling task. """ super().__init__() self.to_hidden = nn.Linear( embed_dim, hidden_dim, bias=False, ) # no padding, will manually pad on the left so it is causal. self.depthwise_conv = nn.Conv1d( in_channels=hidden_dim, out_channels=hidden_dim, groups=hidden_dim, kernel_size=3 ) self.activation = nn.Tanh() self.hidden_to_vocab = nn.Linear( hidden_dim, vocab_size, ) self.bypass = nn.Linear( embed_dim, vocab_size, bias=False, ) def forward(self, labels: Tensor, encoder_embed: Tensor) -> Tensor: """ Compute log-probs. Args: labels: the labels, a Tensor of integer type of shape (batch_size, seq_len); encoder_embed: the embeddings from the encoder, of shape (seq_len, batch_size, embed_dim) Returns: returns the log-probs for each symbol, in a Tensor of shape (batch_size, seq_len). """ (batch_size, seq_len) = labels.shape (num_chunks, _batch_size, embed_dim) = encoder_embed.shape assert batch_size == _batch_size bypass = self.bypass(encoder_embed) x = self.to_hidden(encoder_embed) # (seq_len, batch_size, hidden_dim) x = x.permute(1, 2, 0) # (N,C,H) = (batch_size, hidden_dim, seq_len) x = torch.nn.functional.pad(x, (2, 0)) # pad left with 2 frames. x = self.depthwise_conv(x) x = x.permute(0, 2, 1) # (batch_size, seq_len, hidden_dim) x = self.activation(x) x = self.hidden_to_vocab(x) # (batch_size, seq_len, vocab_size) x = x + bypass.transpose(0, 1) x = x.log_softmax(dim=-1) logprobs = torch.gather(x, dim=-1, index=labels.unsqueeze(-1)).squeeze(-1) # (batch_size, seq_len) return logprobs