#!/usr/bin/env python3 # Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transducer.rnn import ( LayerNormGRU, LayerNormGRUCell, LayerNormGRULayer, LayerNormLSTM, LayerNormLSTMCell, LayerNormLSTMLayer, ) def assert_allclose(a: torch.Tensor, b: torch.Tensor, **kwargs): assert torch.allclose(a, b, **kwargs), f"{(a - b).abs().max()}, {a.numel()}" def test_layernorm_lstm_cell_jit(): input_size = 10 hidden_size = 20 bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 cell = LayerNormLSTMCell( input_size=input_size, hidden_size=hidden_size, bias=bias ) torch.jit.script(cell) def test_layernorm_lstm_cell_constructor(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormLSTMCell(input_size, hidden_size, ln=nn.Identity) torch_cell = nn.LSTMCell(input_size, hidden_size) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_lstm_cell_with_projection_jit(): input_size = 10 hidden_size = 20 proj_size = 5 self_cell = LayerNormLSTMCell(input_size, hidden_size, proj_size=proj_size) torch.jit.script(self_cell) def test_layernorm_lstm_cell_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity ) torch_cell = nn.LSTMCell(input_size, hidden_size, bias=bias) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size).requires_grad_() h = torch.rand(N, hidden_size) c = torch.rand(N, hidden_size) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) torch_h, torch_c = torch_cell(x_clone, (h, c)) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c (self_hc.reshape(-1) * torch.arange(self_hc.numel())).sum().backward() (torch_hc.reshape(-1) * torch.arange(torch_hc.numel())).sum().backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_cell_with_projection_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_cell = LayerNormLSTMCell( input_size, hidden_size, bias=bias, ln=nn.Identity, proj_size=proj_size, ) torch_cell = nn.LSTM( input_size, hidden_size, bias=bias, proj_size=proj_size, batch_first=True, ) with torch.no_grad(): for name, self_param in self_cell.named_parameters(): getattr(torch_cell, f"{name}_l0").copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size).requires_grad_() h = torch.rand(N, proj_size) c = torch.rand(N, hidden_size) x_clone = x.detach().clone().requires_grad_() self_h, self_c = self_cell(x.clone(), (h, c)) _, (torch_h, torch_c) = torch_cell( x_clone.unsqueeze(1), (h.unsqueeze(0), c.unsqueeze(0)) ) torch_h = torch_h.squeeze(0) torch_c = torch_c.squeeze(0) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) (self_h.sum() * self_c.sum()).backward() (torch_h.sum() * torch_c.sum()).backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_layer_jit(): input_size = 10 hidden_size = 20 layer = LayerNormLSTMLayer(input_size, hidden_size=hidden_size) torch.jit.script(layer) def test_layernorm_lstm_layer_with_project_jit(): input_size = 10 hidden_size = 20 proj_size = 5 layer = LayerNormLSTMLayer( input_size, hidden_size=hidden_size, proj_size=proj_size, ) torch.jit.script(layer) def test_layernorm_lstm_layer_with_projection_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, proj_size=proj_size, ln=nn.Identity, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size).requires_grad_() h = torch.rand(N, proj_size) c = torch.rand(N, hidden_size) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, proj_size=proj_size, batch_first=True, dropout=0, bidirectional=False, ) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c.sum() torch_hc = torch_h * torch_c.sum() self_hc_sum = (self_hc.reshape(-1) * torch.arange(self_hc.numel())).sum() torch_hc_sum = (torch_hc.reshape(-1) * torch.arange(torch_hc.numel())).sum() self_y_sum = (self_y.reshape(-1) * torch.arange(self_y.numel())).sum() torch_y_sum = (torch_y.reshape(-1) * torch.arange(torch_y.numel())).sum() (self_hc_sum * self_y_sum).backward() (torch_hc_sum * torch_y_sum).backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_layer_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormLSTMLayer( input_size, hidden_size, bias=bias, ln=nn.Identity, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size).requires_grad_() h = torch.rand(N, hidden_size) c = torch.rand(N, hidden_size) x_clone = x.detach().clone().requires_grad_() self_y, (self_h, self_c) = self_layer(x, (h, c)) torch_layer = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, (torch_h, torch_c) = torch_layer( x_clone, (h.unsqueeze(0), c.unsqueeze(0)) ) assert_allclose(self_y, torch_y) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) self_hc = self_h * self_c torch_hc = torch_h * torch_c self_hc_sum = (self_hc.reshape(-1) * torch.arange(self_hc.numel())).sum() torch_hc_sum = (torch_hc.reshape(-1) * torch.arange(torch_hc.numel())).sum() self_y_sum = (self_y.reshape(-1) * torch.arange(self_y.numel())).sum() torch_y_sum = (torch_y.reshape(-1) * torch.arange(torch_y.numel())).sum() (self_hc_sum * self_y_sum).backward() (torch_hc_sum * torch_y_sum).backward() assert_allclose(x.grad, x_clone.grad, atol=1e-5) def test_layernorm_lstm_jit(): input_size = 2 hidden_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, ) torch.jit.script(lstm) def test_layernorm_lstm_with_projection_jit(): input_size = 2 hidden_size = 5 proj_size = 3 num_layers = 4 bias = True lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, ) torch.jit.script(lstm) def test_layernorm_lstm_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size).requires_grad_() hs = [torch.rand(N, hidden_size) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel())).sum() t_sum = (t * torch.arange(t.numel())).sum() shc_sum = s_sum * self_h.sum() * self_c.sum() thc_sum = t_sum * torch_h.sum() * torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_lstm_with_projection_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=10, high=100, size=(1,)).item() proj_size = torch.randint(low=2, high=hidden_size, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_lstm = LayerNormLSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, ln=nn.Identity, ) torch_lstm = nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, proj_size=proj_size, batch_first=True, bidirectional=False, ) assert len(self_lstm.state_dict()) == len(torch_lstm.state_dict()) with torch.no_grad(): for name, param in self_lstm.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_lstm, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size).requires_grad_() hs = [torch.rand(N, proj_size) for _ in range(num_layers)] cs = [torch.rand(N, hidden_size) for _ in range(num_layers)] states = list(zip(hs, cs)) x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_lstm(x, states) h = torch.stack(hs) c = torch.stack(cs) torch_y, (torch_h, torch_c) = torch_lstm(x_clone, (h, c)) assert_allclose(self_y, torch_y) self_h = torch.stack([s[0] for s in self_states]) self_c = torch.stack([s[1] for s in self_states]) assert_allclose(self_h, torch_h) assert_allclose(self_c, torch_c) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel())).sum() t_sum = (t * torch.arange(t.numel())).sum() shc_sum = s_sum * self_h.sum() * self_c.sum() thc_sum = t_sum * torch_h.sum() * torch_c.sum() shc_sum.backward() thc_sum.backward() assert_allclose(x.grad, x_clone.grad) def test_layernorm_gru_cell_jit(): input_size = 10 hidden_size = 20 cell = LayerNormGRUCell( input_size=input_size, hidden_size=hidden_size, bias=True ) torch.jit.script(cell) def test_layernorm_gru_cell_constructor(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() self_cell = LayerNormGRUCell(input_size, hidden_size, ln=nn.Identity) torch_cell = nn.GRUCell(input_size, hidden_size) for name, param in self_cell.named_parameters(): assert param.shape == getattr(torch_cell, name).shape assert len(self_cell.state_dict()) == len(torch_cell.state_dict()) def test_layernorm_gru_cell_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_cell = LayerNormGRUCell( input_size, hidden_size, bias=bias, ln=nn.Identity ) torch_cell = nn.GRUCell(input_size, hidden_size, bias=bias) with torch.no_grad(): for name, torch_param in torch_cell.named_parameters(): self_param = getattr(self_cell, name) torch_param.copy_(self_param) N = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, input_size).requires_grad_() h = torch.rand(N, hidden_size) x_clone = x.detach().clone().requires_grad_() self_h = self_cell(x.clone(), h) torch_h = torch_cell(x_clone, h) assert_allclose(self_h, torch_h, atol=1e-5) (self_h.reshape(-1) * torch.arange(self_h.numel())).sum().backward() (torch_h.reshape(-1) * torch.arange(torch_h.numel())).sum().backward() assert_allclose(x.grad, x_clone.grad, atol=1e-4) def test_layernorm_gru_layer_jit(): input_size = 10 hidden_size = 20 layer = LayerNormGRULayer(input_size, hidden_size=hidden_size) torch.jit.script(layer) def test_layernorm_gru_layer_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_layer = LayerNormGRULayer( input_size, hidden_size, bias=bias, ln=nn.Identity, ) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size).requires_grad_() h = torch.rand(N, hidden_size) x_clone = x.detach().clone().requires_grad_() self_y, self_h = self_layer(x, h.clone()) torch_layer = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=bias, batch_first=True, dropout=0, bidirectional=False, ) with torch.no_grad(): for name, self_param in self_layer.cell.named_parameters(): getattr(torch_layer, f"{name}_l0").copy_(self_param) torch_y, torch_h = torch_layer(x_clone, h.unsqueeze(0)) assert_allclose(self_y, torch_y, atol=1e-6) assert_allclose(self_h, torch_h, atol=1e-6) self_y_sum = (self_y.reshape(-1) * torch.arange(self_y.numel())).sum() torch_y_sum = (torch_y.reshape(-1) * torch.arange(torch_y.numel())).sum() self_y_sum.backward() torch_y_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=0.1) def test_layernorm_gru_jit(): input_size = 2 hidden_size = 3 num_layers = 4 bias = True gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, ) torch.jit.script(gru) def test_layernorm_gru_forward(): input_size = torch.randint(low=2, high=100, size=(1,)).item() hidden_size = torch.randint(low=2, high=100, size=(1,)).item() num_layers = torch.randint(low=2, high=100, size=(1,)).item() bias = torch.randint(low=0, high=1000, size=(1,)).item() & 2 == 0 self_gru = LayerNormGRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, ln=nn.Identity, ) torch_gru = nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, bias=bias, batch_first=True, bidirectional=False, ) assert len(self_gru.state_dict()) == len(torch_gru.state_dict()) with torch.no_grad(): for name, param in self_gru.named_parameters(): # name has the form layers.0.cell.weight_hh parts = name.split(".") layer_num = parts[1] getattr(torch_gru, f"{parts[-1]}_l{layer_num}").copy_(param) N = torch.randint(low=2, high=100, size=(1,)) T = torch.randint(low=2, high=100, size=(1,)) x = torch.rand(N, T, input_size).requires_grad_() states = [torch.rand(N, hidden_size) for _ in range(num_layers)] x_clone = x.detach().clone().requires_grad_() self_y, self_states = self_gru(x, states) torch_y, torch_states = torch_gru(x_clone, torch.stack(states)) assert_allclose(self_y, torch_y, atol=1e-6) self_states = torch.stack(self_states) assert_allclose(self_states, torch_states, atol=1e-6) s = self_y.reshape(-1) t = torch_y.reshape(-1) s_sum = (s * torch.arange(s.numel())).sum() t_sum = (t * torch.arange(t.numel())).sum() s_state_sum = s_sum + self_states.sum() t_state_sum = t_sum + torch_states.sum() s_state_sum.backward() t_state_sum.backward() assert_allclose(x.grad, x_clone.grad, atol=1e-6) def test_lstm(): test_layernorm_lstm_cell_jit() test_layernorm_lstm_cell_constructor() test_layernorm_lstm_cell_with_projection_jit() test_layernorm_lstm_cell_forward() test_layernorm_lstm_cell_with_projection_forward() # test_layernorm_lstm_layer_jit() test_layernorm_lstm_layer_with_project_jit() test_layernorm_lstm_layer_forward() test_layernorm_lstm_layer_with_projection_forward() test_layernorm_lstm_jit() test_layernorm_lstm_with_projection_jit() test_layernorm_lstm_forward() test_layernorm_lstm_with_projection_forward() def test_gru(): test_layernorm_gru_cell_jit() test_layernorm_gru_cell_constructor() test_layernorm_gru_cell_forward() # test_layernorm_gru_layer_jit() test_layernorm_gru_layer_forward() # test_layernorm_gru_jit() test_layernorm_gru_forward() def main(): test_lstm() test_gru() if __name__ == "__main__": torch.manual_seed(20211202) main()