#!/usr/bin/env python3 # Copyright 2021 Johns Hopkins University (Piotr Żelasko) # Copyright 2021 Xiaomi Corp. (Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re from pathlib import Path from lhotse import CutSet, SupervisionSegment from lhotse.recipes.utils import read_manifests_if_cached from icefall import setup_logger # Similar text filtering and normalization procedure as in: # https://github.com/SpeechColab/WenetSpeech/blob/main/toolkits/kaldi/wenetspeech_data_prep.sh def normalize_text( utt: str, # punct_pattern=re.compile(r"<(COMMA|PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"), punct_pattern=re.compile(r"<(PERIOD|QUESTIONMARK|EXCLAMATIONPOINT)>"), whitespace_pattern=re.compile(r"\s\s+"), ) -> str: return whitespace_pattern.sub(" ", punct_pattern.sub("", utt)) def has_no_oov( sup: SupervisionSegment, oov_pattern=re.compile(r"<(SIL|MUSIC|NOISE|OTHER)>"), ) -> bool: return oov_pattern.search(sup.text) is None def preprocess_wenet_speech(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") output_dir.mkdir(exist_ok=True) # Note: By default, we preprocess all sub-parts. # You can delete those that you don't need. # For instance, if you don't want to use the L subpart, just remove # the line below containing "L" dataset_parts = ( "DEV", "TEST_NET", "TEST_MEETING", "S", "M", "L", ) logging.info("Loading manifest (may take 10 minutes)") manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir, suffix="jsonl.gz", prefix="wenetspeech", ) assert manifests is not None assert len(manifests) == len(dataset_parts), ( len(manifests), len(dataset_parts), list(manifests.keys()), dataset_parts, ) for partition, m in manifests.items(): logging.info(f"Processing {partition}") raw_cuts_path = output_dir / f"cuts_{partition}_raw.jsonl.gz" if raw_cuts_path.is_file(): logging.info(f"{partition} already exists - skipping") continue # Note this step makes the recipe different than LibriSpeech: # We must filter out some utterances and remove punctuation # to be consistent with Kaldi. logging.info("Filtering OOV utterances from supervisions") m["supervisions"] = m["supervisions"].filter(has_no_oov) logging.info(f"Normalizing text in {partition}") for sup in m["supervisions"]: text = str(sup.text) orig_text = text sup.text = normalize_text(sup.text) text = str(sup.text) if len(orig_text) != len(text): logging.info( f"\nOriginal text vs normalized text:\n{orig_text}\n{text}" ) # Create long-recording cut manifests. logging.info(f"Processing {partition}") cut_set = CutSet.from_manifests( recordings=m["recordings"], supervisions=m["supervisions"], ) # Run data augmentation that needs to be done in the # time domain. if partition not in ["DEV", "TEST_NET", "TEST_MEETING"]: logging.info( f"Speed perturb for {partition} with factors 0.9 and 1.1 " "(Perturbing may take 8 minutes and saving may take 20 minutes)" ) cut_set = cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) logging.info(f"Saving to {raw_cuts_path}") cut_set.to_file(raw_cuts_path) def main(): setup_logger(log_filename="./log-preprocess-wenetspeech") preprocess_wenet_speech() logging.info("Done") if __name__ == "__main__": main()