#!/usr/bin/env python3 # Copyright 2022 Xiaomi Corp. (authors: Fangjun Kuang) # # See ../../../../LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script loads ONNX models and uses them to decode waves. You can use the following command to get the exported models: We use the pre-trained model from https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13 as an example to show how to use this file. 1. Download the pre-trained model cd egs/librispeech/ASR repo_url=https://huggingface.co/csukuangfj/icefall-asr-librispeech-pruned-transducer-stateless3-2022-05-13 GIT_LFS_SKIP_SMUDGE=1 git clone $repo_url repo=$(basename $repo_url) pushd $repo git lfs pull --include "data/lang_bpe_500/bpe.model" git lfs pull --include "exp/pretrained-iter-1224000-avg-14.pt" cd exp ln -s pretrained-iter-1224000-avg-14.pt epoch-9999.pt popd 2. Export the model to ONNX ./pruned_transducer_stateless3/export-onnx.py \ --bpe-model $repo/data/lang_bpe_500/bpe.model \ --epoch 9999 \ --avg 1 \ --exp-dir $repo/exp/ It will generate the following 3 files inside $repo/exp: - encoder-epoch-9999-avg-1.onnx - decoder-epoch-9999-avg-1.onnx - joiner-epoch-9999-avg-1.onnx 3. Run this file ./pruned_transducer_stateless3/onnx_pretrained.py \ --encoder-model-filename $repo/exp/encoder-epoch-9999-avg-1.onnx \ --decoder-model-filename $repo/exp/decoder-epoch-9999-avg-1.onnx \ --joiner-model-filename $repo/exp/joiner-epoch-9999-avg-1.onnx \ --tokens $repo/data/lang_bpe_500/tokens.txt \ $repo/test_wavs/1089-134686-0001.wav \ $repo/test_wavs/1221-135766-0001.wav \ $repo/test_wavs/1221-135766-0002.wav """ import argparse import logging import math from typing import List, Tuple import k2 import kaldifeat import numpy as np import onnxruntime as ort import torch import torchaudio from torch.nn.utils.rnn import pad_sequence def get_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--encoder-model-filename", type=str, required=True, help="Path to the encoder onnx model. ", ) parser.add_argument( "--decoder-model-filename", type=str, required=True, help="Path to the decoder onnx model. ", ) parser.add_argument( "--joiner-model-filename", type=str, required=True, help="Path to the joiner onnx model. ", ) parser.add_argument( "--tokens", type=str, help="""Path to tokens.txt.""", ) parser.add_argument( "sound_files", type=str, nargs="+", help="The input sound file(s) to transcribe. " "Supported formats are those supported by torchaudio.load(). " "For example, wav and flac are supported. " "The sample rate has to be 16kHz.", ) parser.add_argument( "--sample-rate", type=int, default=16000, help="The sample rate of the input sound file", ) return parser class OnnxModel: def __init__( self, encoder_model_filename: str, decoder_model_filename: str, joiner_model_filename: str, ): session_opts = ort.SessionOptions() session_opts.inter_op_num_threads = 1 session_opts.intra_op_num_threads = 1 self.session_opts = session_opts self.init_encoder(encoder_model_filename) self.init_decoder(decoder_model_filename) self.init_joiner(joiner_model_filename) def init_encoder(self, encoder_model_filename: str): self.encoder = ort.InferenceSession( encoder_model_filename, sess_options=self.session_opts, ) def init_decoder(self, decoder_model_filename: str): self.decoder = ort.InferenceSession( decoder_model_filename, sess_options=self.session_opts, ) decoder_meta = self.decoder.get_modelmeta().custom_metadata_map self.context_size = int(decoder_meta["context_size"]) self.vocab_size = int(decoder_meta["vocab_size"]) logging.info(f"context_size: {self.context_size}") logging.info(f"vocab_size: {self.vocab_size}") def init_joiner(self, joiner_model_filename: str): self.joiner = ort.InferenceSession( joiner_model_filename, sess_options=self.session_opts, ) joiner_meta = self.joiner.get_modelmeta().custom_metadata_map self.joiner_dim = int(joiner_meta["joiner_dim"]) logging.info(f"joiner_dim: {self.joiner_dim}") def run_encoder( self, x: torch.Tensor, x_lens: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: x: A 3-D tensor of shape (N, T, C) x_lens: A 2-D tensor of shape (N,). Its dtype is torch.int64 Returns: Return a tuple containing: - encoder_out, its shape is (N, T', joiner_dim) - encoder_out_lens, its shape is (N,) """ out = self.encoder.run( [ self.encoder.get_outputs()[0].name, self.encoder.get_outputs()[1].name, ], { self.encoder.get_inputs()[0].name: x.numpy(), self.encoder.get_inputs()[1].name: x_lens.numpy(), }, ) return torch.from_numpy(out[0]), torch.from_numpy(out[1]) def run_decoder(self, decoder_input: torch.Tensor) -> torch.Tensor: """ Args: decoder_input: A 2-D tensor of shape (N, context_size) Returns: Return a 2-D tensor of shape (N, joiner_dim) """ out = self.decoder.run( [self.decoder.get_outputs()[0].name], {self.decoder.get_inputs()[0].name: decoder_input.numpy()}, )[0] return torch.from_numpy(out) def run_joiner( self, encoder_out: torch.Tensor, decoder_out: torch.Tensor ) -> torch.Tensor: """ Args: encoder_out: A 2-D tensor of shape (N, joiner_dim) decoder_out: A 2-D tensor of shape (N, joiner_dim) Returns: Return a 2-D tensor of shape (N, vocab_size) """ out = self.joiner.run( [self.joiner.get_outputs()[0].name], { self.joiner.get_inputs()[0].name: encoder_out.numpy(), self.joiner.get_inputs()[1].name: decoder_out.numpy(), }, )[0] return torch.from_numpy(out) def read_sound_files( filenames: List[str], expected_sample_rate: float ) -> List[torch.Tensor]: """Read a list of sound files into a list 1-D float32 torch tensors. Args: filenames: A list of sound filenames. expected_sample_rate: The expected sample rate of the sound files. Returns: Return a list of 1-D float32 torch tensors. """ ans = [] for f in filenames: wave, sample_rate = torchaudio.load(f) assert ( sample_rate == expected_sample_rate ), f"expected sample rate: {expected_sample_rate}. Given: {sample_rate}" # We use only the first channel ans.append(wave[0]) return ans def greedy_search( model: OnnxModel, encoder_out: torch.Tensor, encoder_out_lens: torch.Tensor, ) -> List[List[int]]: """Greedy search in batch mode. It hardcodes --max-sym-per-frame=1. Args: model: The transducer model. encoder_out: A 3-D tensor of shape (N, T, joiner_dim) encoder_out_lens: A 1-D tensor of shape (N,). Returns: Return the decoded results for each utterance. """ assert encoder_out.ndim == 3, encoder_out.shape assert encoder_out.size(0) >= 1, encoder_out.size(0) packed_encoder_out = torch.nn.utils.rnn.pack_padded_sequence( input=encoder_out, lengths=encoder_out_lens.cpu(), batch_first=True, enforce_sorted=False, ) blank_id = 0 # hard-code to 0 batch_size_list = packed_encoder_out.batch_sizes.tolist() N = encoder_out.size(0) assert torch.all(encoder_out_lens > 0), encoder_out_lens assert N == batch_size_list[0], (N, batch_size_list) context_size = model.context_size hyps = [[blank_id] * context_size for _ in range(N)] decoder_input = torch.tensor( hyps, dtype=torch.int64, ) # (N, context_size) decoder_out = model.run_decoder(decoder_input) offset = 0 for batch_size in batch_size_list: start = offset end = offset + batch_size current_encoder_out = packed_encoder_out.data[start:end] # current_encoder_out's shape: (batch_size, joiner_dim) offset = end decoder_out = decoder_out[:batch_size] logits = model.run_joiner(current_encoder_out, decoder_out) # logits'shape (batch_size, vocab_size) assert logits.ndim == 2, logits.shape y = logits.argmax(dim=1).tolist() emitted = False for i, v in enumerate(y): if v != blank_id: hyps[i].append(v) emitted = True if emitted: # update decoder output decoder_input = [h[-context_size:] for h in hyps[:batch_size]] decoder_input = torch.tensor( decoder_input, dtype=torch.int64, ) decoder_out = model.run_decoder(decoder_input) sorted_ans = [h[context_size:] for h in hyps] ans = [] unsorted_indices = packed_encoder_out.unsorted_indices.tolist() for i in range(N): ans.append(sorted_ans[unsorted_indices[i]]) return ans @torch.no_grad() def main(): parser = get_parser() args = parser.parse_args() logging.info(vars(args)) model = OnnxModel( encoder_model_filename=args.encoder_model_filename, decoder_model_filename=args.decoder_model_filename, joiner_model_filename=args.joiner_model_filename, ) logging.info("Constructing Fbank computer") opts = kaldifeat.FbankOptions() opts.device = "cpu" opts.frame_opts.dither = 0 opts.frame_opts.snip_edges = False opts.frame_opts.samp_freq = args.sample_rate opts.mel_opts.num_bins = 80 fbank = kaldifeat.Fbank(opts) logging.info(f"Reading sound files: {args.sound_files}") waves = read_sound_files( filenames=args.sound_files, expected_sample_rate=args.sample_rate, ) logging.info("Decoding started") features = fbank(waves) feature_lengths = [f.size(0) for f in features] features = pad_sequence( features, batch_first=True, padding_value=math.log(1e-10), ) feature_lengths = torch.tensor(feature_lengths, dtype=torch.int64) encoder_out, encoder_out_lens = model.run_encoder(features, feature_lengths) hyps = greedy_search( model=model, encoder_out=encoder_out, encoder_out_lens=encoder_out_lens, ) s = "\n" symbol_table = k2.SymbolTable.from_file(args.tokens) def token_ids_to_words(token_ids: List[int]) -> str: text = "" for i in token_ids: text += symbol_table[i] return text.replace("▁", " ").strip() context_size = model.context_size for filename, hyp in zip(args.sound_files, hyps): words = token_ids_to_words(hyp[context_size:]) s += f"{filename}:\n{words}\n" logging.info(s) logging.info("Decoding Done") if __name__ == "__main__": formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) main()