#!/usr/bin/env python3 """ This file computes fbank features of the LibriSpeech dataset. Its looks for manifests in the directory data/manifests. The generated fbank features are saved in data/fbank. """ import logging import os from pathlib import Path from lhotse import CutSet, Fbank, FbankConfig, LilcomHdf5Writer from lhotse.recipes.utils import read_manifests_if_cached from icefall.utils import get_executor def compute_fbank_librispeech(): src_dir = Path("data/manifests") output_dir = Path("data/fbank") num_jobs = min(15, os.cpu_count()) num_mel_bins = 80 dataset_parts = ( "dev-clean", "dev-other", "test-clean", "test-other", "train-clean-100", "train-clean-360", "train-other-500", ) manifests = read_manifests_if_cached( dataset_parts=dataset_parts, output_dir=src_dir ) assert manifests is not None extractor = Fbank(FbankConfig(num_mel_bins=num_mel_bins)) with get_executor() as ex: # Initialize the executor only once. for partition, m in manifests.items(): if (output_dir / f"cuts_{partition}.json.gz").is_file(): logging.info(f"{partition} already exists - skipping.") continue logging.info(f"Processing {partition}") cut_set = CutSet.from_manifests( recordings=m["recordings"], supervisions=m["supervisions"], ) if "train" in partition: cut_set = ( cut_set + cut_set.perturb_speed(0.9) + cut_set.perturb_speed(1.1) ) cut_set = cut_set.compute_and_store_features( extractor=extractor, storage_path=f"{output_dir}/feats_{partition}", # when an executor is specified, make more partitions num_jobs=num_jobs if ex is None else 80, executor=ex, storage_type=LilcomHdf5Writer, ) cut_set.to_json(output_dir / f"cuts_{partition}.json.gz") if __name__ == "__main__": formatter = ( "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" ) logging.basicConfig(format=formatter, level=logging.INFO) compute_fbank_librispeech()