#!/usr/bin/env bash # fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674 export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python set -eou pipefail stage=-1 stop_stage=100 perturb_speed=true # We assume dl_dir (download dir) contains the following # directories and files. If not, they will be downloaded # by this script automatically. # # - $dl_dir/mdcc # |-- README.md # |-- audio/ # |-- clip_info_rthk.csv # |-- cnt_asr_metadata_full.csv # |-- cnt_asr_test_metadata.csv # |-- cnt_asr_train_metadata.csv # |-- cnt_asr_valid_metadata.csv # |-- data_statistic.py # |-- length # |-- podcast_447_2021.csv # |-- test.txt # |-- transcription/ # `-- words_length # You can download them from: # https://drive.google.com/file/d/1epfYMMhXdBKA6nxPgUugb2Uj4DllSxkn/view?usp=drive_link # # - $dl_dir/musan # This directory contains the following directories downloaded from # http://www.openslr.org/17/ # # - music # - noise # - speech dl_dir=$PWD/download . shared/parse_options.sh || exit 1 # All files generated by this script are saved in "data". # You can safely remove "data" and rerun this script to regenerate it. mkdir -p data log() { # This function is from espnet local fname=${BASH_SOURCE[1]##*/} echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*" } log "dl_dir: $dl_dir" if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then log "stage 0: Download data" # If you have pre-downloaded it to /path/to/mdcc, # you can create a symlink # # ln -sfv /path/to/mdcc $dl_dir/mdcc # # The directory structure is # mdcc/ # |-- README.md # |-- audio/ # |-- clip_info_rthk.csv # |-- cnt_asr_metadata_full.csv # |-- cnt_asr_test_metadata.csv # |-- cnt_asr_train_metadata.csv # |-- cnt_asr_valid_metadata.csv # |-- data_statistic.py # |-- length # |-- podcast_447_2021.csv # |-- test.txt # |-- transcription/ # `-- words_length if [ ! -d $dl_dir/mdcc/audio ]; then lhotse download mdcc $dl_dir # this will download and unzip dataset.zip to $dl_dir/ mv $dl_dir/dataset $dl_dir/mdcc fi # If you have pre-downloaded it to /path/to/musan, # you can create a symlink # # ln -sfv /path/to/musan $dl_dir/musan # if [ ! -d $dl_dir/musan ]; then lhotse download musan $dl_dir fi fi if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then log "Stage 1: Prepare MDCC manifest" # We assume that you have downloaded the MDCC corpus # to $dl_dir/mdcc if [ ! -f data/manifests/.mdcc_manifests.done ]; then log "Might take 40 minutes to traverse the directory." mkdir -p data/manifests lhotse prepare mdcc $dl_dir/mdcc data/manifests touch data/manifests/.mdcc_manifests.done fi fi if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then log "Stage 2: Prepare musan manifest" # We assume that you have downloaded the musan corpus # to data/musan if [ ! -f data/manifests/.musan_manifests.done ]; then log "It may take 6 minutes" mkdir -p data/manifests lhotse prepare musan $dl_dir/musan data/manifests touch data/manifests/.musan_manifests.done fi fi if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then log "Stage 3: Compute fbank for MDCC" if [ ! -f data/fbank/.mdcc.done ]; then mkdir -p data/fbank ./local/compute_fbank_mdcc.py --perturb-speed ${perturb_speed} touch data/fbank/.mdcc.done fi fi if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then log "Stage 4: Compute fbank for musan" if [ ! -f data/fbank/.msuan.done ]; then mkdir -p data/fbank ./local/compute_fbank_musan.py touch data/fbank/.msuan.done fi fi lang_char_dir=data/lang_char if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then log "Stage 5: Prepare char based lang" mkdir -p $lang_char_dir # Prepare text. # Note: in Linux, you can install jq with the following command: # 1. wget -O jq https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 # 2. chmod +x ./jq # 3. cp jq /usr/bin if [ ! -f $lang_char_dir/text ]; then gunzip -c data/manifests/mdcc_supervisions_train.jsonl.gz \ |jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \ > $lang_char_dir/train_text cat $lang_char_dir/train_text > $lang_char_dir/text gunzip -c data/manifests/mdcc_supervisions_test.jsonl.gz \ |jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \ > $lang_char_dir/valid_text cat $lang_char_dir/valid_text >> $lang_char_dir/text gunzip -c data/manifests/mdcc_supervisions_valid.jsonl.gz \ |jq '.text' | sed 's/"//g' | ./local/text2token.py -t "char" \ > $lang_char_dir/test_text cat $lang_char_dir/test_text >> $lang_char_dir/text fi if [ ! -f $lang_char_dir/text_words_segmentation ]; then ./local/preprocess_mdcc.py --input-file $lang_char_dir/text \ --output-dir $lang_char_dir mv $lang_char_dir/text $lang_char_dir/_text cp $lang_char_dir/text_words_segmentation $lang_char_dir/text fi if [ ! -f $lang_char_dir/tokens.txt ]; then ./local/prepare_char.py --lang-dir $lang_char_dir fi fi if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then log "Stage 6: Prepare G" mkdir -p data/lm # Train LM on transcripts if [ ! -f data/lm/3-gram.unpruned.arpa ]; then python3 ./shared/make_kn_lm.py \ -ngram-order 3 \ -text $lang_char_dir/text_words_segmentation \ -lm data/lm/3-gram.unpruned.arpa fi # We assume you have installed kaldilm, if not, please install # it using: pip install kaldilm if [ ! -f data/lm/G_3_gram_char.fst.txt ]; then # It is used in building HLG python3 -m kaldilm \ --read-symbol-table="$lang_char_dir/words.txt" \ --disambig-symbol='#0' \ --max-order=3 \ data/lm/3-gram.unpruned.arpa > data/lm/G_3_gram_char.fst.txt fi if [ ! -f $lang_char_dir/HLG.fst ]; then ./local/prepare_lang_fst.py \ --lang-dir $lang_char_dir \ --ngram-G ./data/lm/G_3_gram_char.fst.txt fi fi if [ $stage -le 7 ] && [ $stop_stage -ge 7 ]; then log "Stage 7: Compile LG & HLG" ./local/compile_hlg.py --lang-dir $lang_char_dir --lm G_3_gram_char ./local/compile_lg.py --lang-dir $lang_char_dir --lm G_3_gram_char fi if [ $stage -le 8 ] && [ $stop_stage -ge 8 ]; then log "Stage 8: Generate LM training data" log "Processing char based data" out_dir=data/lm_training_char mkdir -p $out_dir $dl_dir/lm if [ ! -f $dl_dir/lm/mdcc-train-word.txt ]; then ./local/text2segments.py --input-file $lang_char_dir/train_text \ --output-file $dl_dir/lm/mdcc-train-word.txt fi # training words ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $dl_dir/lm/mdcc-train-word.txt \ --lm-archive $out_dir/lm_data.pt # valid words if [ ! -f $dl_dir/lm/mdcc-valid-word.txt ]; then ./local/text2segments.py --input-file $lang_char_dir/valid_text \ --output-file $dl_dir/lm/mdcc-valid-word.txt fi ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $dl_dir/lm/mdcc-valid-word.txt \ --lm-archive $out_dir/lm_data_valid.pt # test words if [ ! -f $dl_dir/lm/mdcc-test-word.txt ]; then ./local/text2segments.py --input-file $lang_char_dir/test_text \ --output-file $dl_dir/lm/mdcc-test-word.txt fi ./local/prepare_char_lm_training_data.py \ --lang-char data/lang_char \ --lm-data $dl_dir/lm/mdcc-test-word.txt \ --lm-archive $out_dir/lm_data_test.pt fi if [ $stage -le 9 ] && [ $stop_stage -ge 9 ]; then log "Stage 9: Sort LM training data" # Sort LM training data by sentence length in descending order # for ease of training. # # Sentence length equals to the number of tokens # in a sentence. out_dir=data/lm_training_char mkdir -p $out_dir ln -snf ../../../librispeech/ASR/local/sort_lm_training_data.py local/ ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data.pt \ --out-lm-data $out_dir/sorted_lm_data.pt \ --out-statistics $out_dir/statistics.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data_valid.pt \ --out-lm-data $out_dir/sorted_lm_data-valid.pt \ --out-statistics $out_dir/statistics-valid.txt ./local/sort_lm_training_data.py \ --in-lm-data $out_dir/lm_data_test.pt \ --out-lm-data $out_dir/sorted_lm_data-test.pt \ --out-statistics $out_dir/statistics-test.txt fi if [ $stage -le 12 ] && [ $stop_stage -ge 12 ]; then log "Stage 12: Train RNN LM model" python ../../../icefall/rnn_lm/train.py \ --start-epoch 0 \ --world-size 1 \ --num-epochs 20 \ --use-fp16 0 \ --embedding-dim 512 \ --hidden-dim 512 \ --num-layers 2 \ --batch-size 400 \ --exp-dir rnnlm_char/exp \ --lm-data $out_dir/sorted_lm_data.pt \ --lm-data-valid $out_dir/sorted_lm_data-valid.pt \ --vocab-size 4336 \ --master-port 12345 fi